Showing 21 - 29 results of 29 for search '(( binary data resource optimization algorithm ) OR ( binary mask model optimization algorithm ))', query time: 1.00s Refine Results
  1. 21

    Confusion matrix. by Yixian Wen (12201388)

    Published 2025
    “…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
  2. 22

    Parameter settings. by Yixian Wen (12201388)

    Published 2025
    “…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
  3. 23
  4. 24

    Flowchart scheme of the ML-based model. by Noshaba Qasmi (20405009)

    Published 2024
    “…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”
  5. 25

    Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports by Olivier Q. Groot (9370461)

    Published 2020
    “…However, processing this rich resource of data for clinical and research purposes, depends on labor-intensive and potentially error-prone manual review. …”
  6. 26

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) by Daniel Pérez Palau (11097348)

    Published 2024
    “…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
  7. 27
  8. 28

    Seed mix selection model by Bethanne Bruninga-Socolar (10923639)

    Published 2022
    “…The genetic algorithm then operated over 1000 iterations, applying crossover and mutation processes to optimize bee richness. …”
  9. 29

    Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles by Soham Savarkar (21811825)

    Published 2025
    “…</p><p dir="ltr">This curated dataset addresses several limitations of existing toxicological datasets by enhancing feature diversity, standardization, and data quality control. It is publicly available via the Supplementary Information section and aims to serve as a benchmark resource for researchers developing predictive nanotoxicology models.…”