Search alternatives:
robust classification » forest classification (Expand Search), risk classification (Expand Search), group classification (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data model » data models (Expand Search)
robust classification » forest classification (Expand Search), risk classification (Expand Search), group classification (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data model » data models (Expand Search)
-
121
-
122
-
123
-
124
-
125
-
126
-
127
-
128
-
129
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Two NIRs devices, the portable QualitySpec® Trek (QST) and the benchtop NIRFlex N-500 were used to collect spectral data. Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …”
-
130
Event-driven data flow processing.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
131
Presentation_1_Modified GAN Augmentation Algorithms for the MRI-Classification of Myocardial Scar Tissue in Ischemic Cardiomyopathy.PPTX
Published 2021“…Currently, there are no optimized deep-learning algorithms for the automated classification of scarred vs. normal myocardium. …”
-
132
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
133
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
Published 2019“…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …”
-
134
Flowchart scheme of the ML-based model.
Published 2024“…<b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”
-
135
Multicategory Angle-Based Learning for Estimating Optimal Dynamic Treatment Regimes With Censored Data
Published 2021“…Specifically, the proposed method obtains the optimal DTR via integrating estimations of decision rules at multiple stages into a single multicategory classification algorithm without imposing additional constraints, which is also more computationally efficient and robust. …”
-
136
Related studies on IDS using deep learning.
Published 2024“…The model’s binary and multi-class classification accuracies on the UNSW-NB15 dataset are 99.56% and 99.45%, respectively. …”
-
137
The architecture of the BI-LSTM model.
Published 2024“…The model’s binary and multi-class classification accuracies on the UNSW-NB15 dataset are 99.56% and 99.45%, respectively. …”
-
138
Comparison of accuracy and DR on UNSW-NB15.
Published 2024“…The model’s binary and multi-class classification accuracies on the UNSW-NB15 dataset are 99.56% and 99.45%, respectively. …”
-
139
Comparison of DR and FPR of UNSW-NB15.
Published 2024“…The model’s binary and multi-class classification accuracies on the UNSW-NB15 dataset are 99.56% and 99.45%, respectively. …”
-
140