بدائل البحث:
across classification » actions classification (توسيع البحث), class classification (توسيع البحث), crop classification (توسيع البحث)
robust optimization » process optimization (توسيع البحث), robust estimation (توسيع البحث), joint optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
across classification » actions classification (توسيع البحث), class classification (توسيع البحث), crop classification (توسيع البحث)
robust optimization » process optimization (توسيع البحث), robust estimation (توسيع البحث), joint optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
-
41
-
42
Demonstration data on the set up of consumer wearable device for exposure and health monitoring in population studies
منشور في 2022"…The Variables included in the first three excel tabs were the following: Participant ID (Unique serial number for patient participating in the study), % Time Before (Percentage of time with data before protocol implementation), % Time After (Percentage of time with data after protocol implementation), Timestamp (Date and time of event occurrence), Indoor/Outdoor (Categorical- Classification of GPS signals to Indoor and Outdoor and null(missing value) based on distance from participant home), Filling algorithm (Imputation algorithm), SSID (Wireless network name connected to the smartwatch), Wi-Fi Signal Strength (Connection strength via Wi-Fi between smartwatch and home’s wireless network. (0 maximum strength), IMEI (International mobile equipment identity. …"
-
43
-
44
Image1_Benchmark of Data Processing Methods and Machine Learning Models for Gut Microbiome-Based Diagnosis of Inflammatory Bowel Disease.eps
منشور في 2022"…Pipeline generalizability to new cohorts of patients was evaluated with two binary classification metrics following leave-one-dataset-out cross (LODO) validation, where all samples from one study were left out of the training set and tested upon. …"
-
45
-
46
-
47
Models and Dataset
منشور في 2025"…</p><p dir="ltr"><br></p><p dir="ltr"><b>RAO (Rao Optimization Algorithm):</b><br>RAO is a parameter-less optimization algorithm that updates solutions based on simple arithmetic operations involving the best and worst individuals in the population. …"
-
48
iNCog-EEG (ideal vs. Noisy Cognitive EEG for Workload Assessment) Dataset
منشور في 2025"…Inside each folder, four <b>.EDF</b> files represent the workload conditions:</p><pre><pre>subxx_nw.EDF → No Workload (resting state) <br>subxx_lw.EDF → Low Workload (easy multitasking) <br>subxx_mw.EDF → Moderate Workload (medium multitasking) <br>subxx_hw.EDF → High Workload (hard multitasking) <br></pre></pre><ul><li><b>Subjects 01–30:</b> Clean EEG recordings</li><li><b>Subjects 31–40:</b> Noisy EEG recordings with real-world artifacts</li></ul><p dir="ltr">This structure ensures straightforward differentiation between clean vs. noisy data and across workload levels.</p><h3>Applications</h3><p dir="ltr">This dataset can be applied to a wide range of research areas, including:</p><ul><li>EEG signal denoising and artifact rejection</li><li>Binary and hierarchical <b>cognitive workload classification</b></li><li>Development of <b>robust Brain–Computer Interfaces (BCIs)</b></li><li>Benchmarking algorithms under <b>ideal and noisy conditions</b></li><li>Multitasking and mental workload assessment in <b>real-world scenarios</b></li></ul><p dir="ltr">By combining controlled multitasking protocols with deliberately introduced environmental noise, <b>iNCog-EEG provides a comprehensive benchmark</b> for advancing EEG-based workload recognition systems in both clean and challenging conditions.…"
-
49
Supplementary Material 8
منشور في 2025"…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…"
-
50
Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png
منشور في 2025"…Introduction<p>The increasing complexity of athlete cardiovascular risk profiles, coupled with evolving demands in pre-participation screening, necessitates robust, interpretable, and physiologically grounded assessment tools. …"
-
51
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
منشور في 2025"…The dataset also enables parameter space mapping, allowing the generation of 2D/3D response surfaces showing toxicity trends across varying core sizes and dosages.</p><p dir="ltr">This curated dataset addresses several limitations of existing toxicological datasets by enhancing feature diversity, standardization, and data quality control. …"