Search alternatives:
robust optimization » process optimization (Expand Search), robust estimation (Expand Search)
joint optimization » policy optimization (Expand Search), wolf optimization (Expand Search), codon optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data joint » data point (Expand Search), data points (Expand Search)
robust optimization » process optimization (Expand Search), robust estimation (Expand Search)
joint optimization » policy optimization (Expand Search), wolf optimization (Expand Search), codon optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data joint » data point (Expand Search), data points (Expand Search)
-
21
Friedman average rank sum test results.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
22
Supplementary Material for: Penalized Logistic Regression Analysis for Genetic Association Studies of Binary Phenotypes
Published 2022“…Introduction: Increasingly, logistic regression methods for genetic association studies of binary phenotypes must be able to accommodate data sparsity, which arises from unbalanced case-control ratios and/or rare genetic variants. …”
-
23
-
24
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Cooking data were classified into binary and multiclass variables (CT4C and CT6C). …”
-
25
-
26
Variable Selection with Multiply-Imputed Datasets: Choosing Between Stacked and Grouped Methods
Published 2022“…Building on existing work, we (i) derive and implement efficient cyclic coordinate descent and majorization-minimization optimization algorithms for continuous and binary outcome data, (ii) incorporate adaptive shrinkage penalties, (iii) compare these methods through simulation, and (iv) develop an R package <i>miselect</i>. …”
-
27
-
28
Models and Dataset
Published 2025“…</p><p dir="ltr"><br></p><p dir="ltr"><b>RAO (Rao Optimization Algorithm):</b><br>RAO is a parameter-less optimization algorithm that updates solutions based on simple arithmetic operations involving the best and worst individuals in the population. …”
-
29
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Cooking data were classified into binary and multiclass variables (CT4C and CT6C). …”
-
30
Supplementary Material 8
Published 2025“…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…”
-
31
Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png
Published 2025“…Introduction<p>The increasing complexity of athlete cardiovascular risk profiles, coupled with evolving demands in pre-participation screening, necessitates robust, interpretable, and physiologically grounded assessment tools. …”