بدائل البحث:
source classification » correct classification (توسيع البحث), gesture classification (توسيع البحث), state classification (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data source » data sources (توسيع البحث)
binary wave » binary image (توسيع البحث)
wave model » naive model (توسيع البحث), game model (توسيع البحث), base model (توسيع البحث)
source classification » correct classification (توسيع البحث), gesture classification (توسيع البحث), state classification (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data source » data sources (توسيع البحث)
binary wave » binary image (توسيع البحث)
wave model » naive model (توسيع البحث), game model (توسيع البحث), base model (توسيع البحث)
-
21
-
22
-
23
-
24
-
25
Small-scale dataset comparative analysis using the number of features selected.
منشور في 2023الموضوعات: -
26
-
27
-
28
Data_Sheet_1_Pneumonia detection by binary classification: classical, quantum, and hybrid approaches for support vector machine (SVM).pdf
منشور في 2024"…A support vector machine (SVM) is attractive because binary classification can be represented as an optimization problem, in particular as a Quadratic Unconstrained Binary Optimization (QUBO) model, which, in turn, maps naturally to an Ising model, thereby making annealing—classical, quantum, and hybrid—an attractive approach to explore. …"
-
29
-
30
-
31
Analysis of geo-spatiotemporal data using machine learning algorithms and reliability enhancement for urbanization decision support
منشور في 2020"…Two classification algorithms – random forest (RF) and support vector machines (SVM) – were used to produce binary (built-up / non-built up) maps for all years within the temporal span. …"
-
32
MCLP_quantum_annealer_V0.5
منشور في 2025"…Theoretical and applied experiments are conducted using four solvers: QBSolv, D-Wave Hybrid binary quadratic model 2, D-Wave Advantage system 4.1, and Gurobi. …"
-
33
DataSheet_1_Histopathology image classification: highlighting the gap between manual analysis and AI automation.pdf
منشور في 2024"…The study compares two distinct approaches, training artificial intelligence-based algorithms and manual machine learning models, to automate tissue classification. …"
-
34
-
35
DataSheet1_Effective Search of Triterpenes with Anti-HSV-1 Activity Using a Classification Model by Logistic Regression.pdf
منشور في 2021"…In this study, we constructed a binary classification model (i.e., active or inactive) using a logistic regression algorithm. …"
-
36
PathOlOgics_RBCs Python Scripts.zip
منشور في 2023"…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …"
-
37
Development of a Battery of <i>In Silico</i> Prediction Tools for Drug-Induced Liver Injury from the Vantage Point of Translational Safety Assessment
منشور في 2020"…A human DILI training set of 305 oral marketed drugs was prepared and a binary classification scheme applied. The second knowledge base consists of mammalian repeated dose toxicity with liver toxicity data from various regulatory sources. …"
-
38
iNCog-EEG (ideal vs. Noisy Cognitive EEG for Workload Assessment) Dataset
منشور في 2025"…Inside each folder, four <b>.EDF</b> files represent the workload conditions:</p><pre><pre>subxx_nw.EDF → No Workload (resting state) <br>subxx_lw.EDF → Low Workload (easy multitasking) <br>subxx_mw.EDF → Moderate Workload (medium multitasking) <br>subxx_hw.EDF → High Workload (hard multitasking) <br></pre></pre><ul><li><b>Subjects 01–30:</b> Clean EEG recordings</li><li><b>Subjects 31–40:</b> Noisy EEG recordings with real-world artifacts</li></ul><p dir="ltr">This structure ensures straightforward differentiation between clean vs. noisy data and across workload levels.</p><h3>Applications</h3><p dir="ltr">This dataset can be applied to a wide range of research areas, including:</p><ul><li>EEG signal denoising and artifact rejection</li><li>Binary and hierarchical <b>cognitive workload classification</b></li><li>Development of <b>robust Brain–Computer Interfaces (BCIs)</b></li><li>Benchmarking algorithms under <b>ideal and noisy conditions</b></li><li>Multitasking and mental workload assessment in <b>real-world scenarios</b></li></ul><p dir="ltr">By combining controlled multitasking protocols with deliberately introduced environmental noise, <b>iNCog-EEG provides a comprehensive benchmark</b> for advancing EEG-based workload recognition systems in both clean and challenging conditions.…"
-
39
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
منشور في 2025"…Data sources included peer-reviewed publications and reputable open-access repositories such as the NanoPharos database. …"