Search alternatives:
initialization algorithm » optimization algorithms (Expand Search), maximization algorithm (Expand Search), identification algorithm (Expand Search)
source initialization » source utilization (Expand Search), node initialization (Expand Search), source localization (Expand Search)
design optimization » bayesian optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data source » data sources (Expand Search)
binary case » binary mask (Expand Search), binary image (Expand Search), primary case (Expand Search)
case design » based design (Expand Search), game design (Expand Search), core design (Expand Search)
initialization algorithm » optimization algorithms (Expand Search), maximization algorithm (Expand Search), identification algorithm (Expand Search)
source initialization » source utilization (Expand Search), node initialization (Expand Search), source localization (Expand Search)
design optimization » bayesian optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data source » data sources (Expand Search)
binary case » binary mask (Expand Search), binary image (Expand Search), primary case (Expand Search)
case design » based design (Expand Search), game design (Expand Search), core design (Expand Search)
-
1
MSE for ILSTM algorithm in binary classification.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
2
-
3
Python-Based Algorithm for Calculating Physical Properties of Aqueous Mixtures Composed of Substances Not Available in Databases
Published 2025“…To validate the accuracy of the model, the results obtained from the proposed algorithm were compared to experimental data for 37 binary aqueous mixture systems covering properties such as density, heat capacity, viscosity, and thermal conductivity. …”
-
4
Python-Based Algorithm for Calculating Physical Properties of Aqueous Mixtures Composed of Substances Not Available in Databases
Published 2025“…To validate the accuracy of the model, the results obtained from the proposed algorithm were compared to experimental data for 37 binary aqueous mixture systems covering properties such as density, heat capacity, viscosity, and thermal conductivity. …”
-
5
-
6
-
7
-
8
Analysis of geo-spatiotemporal data using machine learning algorithms and reliability enhancement for urbanization decision support
Published 2020“…Two classification algorithms – random forest (RF) and support vector machines (SVM) – were used to produce binary (built-up / non-built up) maps for all years within the temporal span. …”
-
9
-
10
Summary of LITNET-2020 dataset.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
11
SHAP analysis for LITNET-2020 dataset.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
12
Comparison of intrusion detection systems.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
13
Parameter setting for CBOA and PSO.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
14
NSL-KDD dataset description.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
15
The architecture of LSTM cell.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
16
The architecture of ILSTM.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
17
Parameter setting for LSTM.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
18
LITNET-2020 data splitting approach.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
19
Transformation of symbolic features in NSL-KDD.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
20
PathOlOgics_RBCs Python Scripts.zip
Published 2023“…<p dir="ltr">The first algorithm for segmentation and localization (see PathOlOgics_script_1; segment & localize using a pen) relied on manually tracing the borders of each cell using a digital pen tool on a big touchscreen display showing source images/patches. …”