بدائل البحث:
guided optimization » based optimization (توسيع البحث), model optimization (توسيع البحث)
location algorithm » selection algorithm (توسيع البحث), encryption algorithm (توسيع البحث), correction algorithm (توسيع البحث)
source location » resource allocation (توسيع البحث), source localization (توسيع البحث), source pollution (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data source » data sources (توسيع البحث)
binary task » binary mask (توسيع البحث)
guided optimization » based optimization (توسيع البحث), model optimization (توسيع البحث)
location algorithm » selection algorithm (توسيع البحث), encryption algorithm (توسيع البحث), correction algorithm (توسيع البحث)
source location » resource allocation (توسيع البحث), source localization (توسيع البحث), source pollution (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data source » data sources (توسيع البحث)
binary task » binary mask (توسيع البحث)
-
1
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
2
IRBMO vs. meta-heuristic algorithms boxplot.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
3
IRBMO vs. feature selection algorithm boxplot.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
4
-
5
-
6
Pseudo Code of RBMO.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
7
P-value on CEC-2017(Dim = 30).
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
8
Memory storage behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
9
Elite search behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
10
Description of the datasets.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
11
S and V shaped transfer functions.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
12
S- and V-Type transfer function diagrams.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
13
Collaborative hunting behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
14
Friedman average rank sum test results.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
15
IRBMO vs. variant comparison adaptation data.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
16
Min-Cut/Max-Flow Problem Instances for Benchmarking
منشور في 2022"…</p> </li></ul> </li></ul> </div><div><p>The reason for releasing this collection is to provide a single place download all datasets used in our paper (and various previous paper) instead of having to scavenge from multiple sources. Furthermore, several of the problem instances typically used for benchmarking min-cut/max-flow algorithms are no longer available at their original locations and may be difficult to find. …"
-
17
Models and Dataset
منشور في 2025"…Operating in a binary search space, TJO simulates intelligent and evasive movements of the prey to guide the population toward optimal solutions. …"