Showing 141 - 160 results of 200 for search '(( binary data step optimization algorithm ) OR ( binary a model optimization algorithm ))', query time: 0.41s Refine Results
  1. 141

    Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment by Jianfang Cao (1881379)

    Published 2019
    “…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …”
  2. 142
  3. 143

    Analysis and design of algorithms for the manufacturing process of integrated circuits by Sonia Fleytas (16856403)

    Published 2023
    “…The (approximate) solution proposals of state-of-the-art methods include rule-based approaches, genetic algorithms, and reinforcement learning. There is a binary integer programming model for this problem in the literature, from which its authors proposed a genetic algorithm to obtain approximate solutions. …”
  4. 144
  5. 145

    Unraveling Adsorbate-Induced Structural Evolution of Iron Carbide Nanoparticles by Peter S. Rice (11805875)

    Published 2025
    “…For this purpose, we have developed a general procedure that we use to model an experimentally relevant 270-atom Fe<sub>182</sub>C<sub>88</sub> NP using the neural network-assisted stochastic surface walk global optimization algorithm (SSW-NN). …”
  6. 146
  7. 147

    Generalized Tensor Decomposition With Features on Multiple Modes by Jiaxin Hu (1327875)

    Published 2021
    “…Our proposal handles a broad range of data types, including continuous, count, and binary observations. …”
  8. 148

    Table_1_bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease.docx by Yupeng Li (507508)

    Published 2023
    “…</p>Methods<p>This paper establishes a medical prediction model for the first time on the basis of the enhanced particle swarm optimization (SRWPSO) algorithm and the fuzzy K-nearest neighbor (FKNN), called bSRWPSO-FKNN, which is practiced on a dataset related to patients with AD. …”
  9. 149

    GSE96058 information. by Sepideh Zununi Vahed (9861298)

    Published 2024
    “…</p><p>Results</p><p>In this study, five main steps were followed for the analysis of mRNA expression data: reading, preprocessing, feature selection, classification, and SHAP algorithm. …”
  10. 150

    The performance of classifiers. by Sepideh Zununi Vahed (9861298)

    Published 2024
    “…</p><p>Results</p><p>In this study, five main steps were followed for the analysis of mRNA expression data: reading, preprocessing, feature selection, classification, and SHAP algorithm. …”
  11. 151
  12. 152

    Summary of LITNET-2020 dataset. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  13. 153

    SHAP analysis for LITNET-2020 dataset. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  14. 154

    Comparison of intrusion detection systems. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  15. 155

    Parameter setting for CBOA and PSO. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  16. 156

    NSL-KDD dataset description. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  17. 157

    The architecture of LSTM cell. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  18. 158

    The architecture of ILSTM. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  19. 159

    Parameter setting for LSTM. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  20. 160

    LITNET-2020 data splitting approach. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”