بدائل البحث:
robust optimization » process optimization (توسيع البحث), robust estimation (توسيع البحث), joint optimization (توسيع البحث)
step optimization » after optimization (توسيع البحث), swarm optimization (توسيع البحث), based optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data step » data set (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a robust » _ robust (توسيع البحث)
robust optimization » process optimization (توسيع البحث), robust estimation (توسيع البحث), joint optimization (توسيع البحث)
step optimization » after optimization (توسيع البحث), swarm optimization (توسيع البحث), based optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data step » data set (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a robust » _ robust (توسيع البحث)
-
41
GSE96058 information.
منشور في 2024"…</p><p>Results</p><p>In this study, five main steps were followed for the analysis of mRNA expression data: reading, preprocessing, feature selection, classification, and SHAP algorithm. …"
-
42
The performance of classifiers.
منشور في 2024"…</p><p>Results</p><p>In this study, five main steps were followed for the analysis of mRNA expression data: reading, preprocessing, feature selection, classification, and SHAP algorithm. …"
-
43
-
44
Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model
منشور في 2019"…Because of the semipredictive nature of the symmetric eNRTL-SAC model, the segment parameter regression is a critical step for solubility prediction accuracy. A particle swarm optimization algorithm is incorporated to preregress conceptual segment parameters of solutes. …"
-
45
Multicategory Angle-Based Learning for Estimating Optimal Dynamic Treatment Regimes With Censored Data
منشور في 2021"…Specifically, the proposed method obtains the optimal DTR via integrating estimations of decision rules at multiple stages into a single multicategory classification algorithm without imposing additional constraints, which is also more computationally efficient and robust. …"
-
46
-
47
Sample image for illustration.
منشور في 2024"…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
-
48
Comparison analysis of computation time.
منشور في 2024"…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
-
49
Process flow diagram of CBFD.
منشور في 2024"…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
-
50
Precision recall curve.
منشور في 2024"…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
-
51
Quadratic polynomial in 2D image plane.
منشور في 2024"…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
-
52
Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png
منشور في 2025"…CardioSpectra formulates athlete profiles as multivariate probabilistic entities across latent diagnostic states, using sparsity-aware inference to generate interpretable risk predictions while optimizing a sensitivity-specificity trade-off tailored to clinical priorities. …"
-
53
Models and Dataset
منشور في 2025"…<p dir="ltr"><b>P3DE (Parameter-less Population Pyramid with Deep Ensemble):</b><br>P3DE is a hybrid feature selection framework that combines the Parameter-less Population Pyramid (P3) metaheuristic optimization algorithm with a deep ensemble of autoencoders. …"
-
54
Processed dataset to train and test the WGAN-GP_IMOA_DA_Ensemble model
منشور في 2025"…This framework integrates a novel biologically inspired optimization algorithm, the Indian Millipede Optimization Algorithm (IMOA), for effective feature selection. …"
-
55
Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat.
منشور في 2025"…<p dir="ltr">Objective<br><br>To evaluate the predictive ability of the "habitat" variable, in isolation, to determine mushroom toxicity (edible or poisonous) using a Support Vector Machine (SVM) classification model, investigating whether this single feature is sufficient to build a robust and reliable classifier. …"
-
56
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
منشور في 2024"…The accuracy of the optimal scenario for classifying samples with a cooking time of 30 minutes reached RCal2 = 0.86 and RVal2 = 0.84, with a Kappa value of 0.53. …"
-
57
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
منشور في 2024"…The accuracy of the optimal scenario for classifying samples with a cooking time of 30 minutes reached RCal2 = 0.86 and RVal2 = 0.84, with a Kappa value of 0.53. …"
-
58
Supplementary Material 8
منشور في 2025"…</li><li><b>Adaboost: </b>A boosting algorithm that combines weak classifiers iteratively, refining predictions and improving the identification of antimicrobial resistance patterns.…"
-
59
Flow diagram of the automatic animal detection and background reconstruction.
منشور في 2020"…If the identical blob that was detected in panel J (bottom) is found in any of the new subtracted binary images (cyan arrow), the animal is considered as having left its original position, and the algorithm continues. …"
-
60
Data Sheet 1_Detection of litchi fruit maturity states based on unmanned aerial vehicle remote sensing and improved YOLOv8 model.docx
منشور في 2025"…The results showed significant stage-based changes in the maturity states of litchi fruits: during the rapid growth phase, the fruit count increased by 18.28%; during the maturity differentiation phase, semi-mature fruits accounted for approximately 53%; and during the peak maturity phase, mature fruits exceeded 50%, with a fruit drop rate of 11.46%. In addition, YOLOv8-FPDW was more competitive than mainstream object detection algorithms. …"