Search alternatives:
task optimization » based optimization (Expand Search), phase optimization (Expand Search), dose optimization (Expand Search)
path optimization » swarm optimization (Expand Search), whale optimization (Expand Search), based optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a path » _ path (Expand Search)
task optimization » based optimization (Expand Search), phase optimization (Expand Search), dose optimization (Expand Search)
path optimization » swarm optimization (Expand Search), whale optimization (Expand Search), based optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a path » _ path (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
A* Path-Finding Algorithm to Determine Cell Connections
Published 2025“…To address this, the research integrates a modified A* pathfinding algorithm with a U-Net convolutional neural network, a custom statistical binary classification method, and a personalized Min-Max connectivity threshold to automate the detection of astrocyte connectivity.…”
-
8
DE algorithm flow.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
9
Test results of different algorithms.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
10
-
11
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …”
-
12
Table_1_A scheduling route planning algorithm based on the dynamic genetic algorithm with ant colony binary iterative optimization for unmanned aerial vehicle spraying in multiple...
Published 2022“…By optimizing the crossover and mutation operators of the genetic algorithm (GA), the crossover and mutation probabilities are automatically adjusted with the individual fitness and a dynamic genetic algorithm (DGA) is proposed. …”
-
13
Proposed Algorithm.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
14
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …”
-
15
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …”
-
16
Comparisons between ADAM and NADAM optimizers.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
17
Plan frame of the house.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
18
Ablation test results.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
19
Hyperparameter selection test.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
20
Multiple index test results of different methods.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”