Search alternatives:
probes optimization » process optimization (Expand Search), robust optimization (Expand Search), property optimization (Expand Search)
task optimization » based optimization (Expand Search), phase optimization (Expand Search), path optimization (Expand Search)
library based » laboratory based (Expand Search)
based probes » based protein (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
probes optimization » process optimization (Expand Search), robust optimization (Expand Search), property optimization (Expand Search)
task optimization » based optimization (Expand Search), phase optimization (Expand Search), path optimization (Expand Search)
library based » laboratory based (Expand Search)
based probes » based protein (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
An optimal solution for the HFS instance.
Published 2025“…This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”
-
8
-
9
Comparison based on hard instances from [79].
Published 2025“…This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”
-
10
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …”
-
11
Proposed Algorithm.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
12
Probe combines and as a 2-aggregation.
Published 2025“…This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”
-
13
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …”
-
14
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …”
-
15
Comparisons between ADAM and NADAM optimizers.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
16
A simple HFS instance.
Published 2025“…This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”
-
17
The scheduling Gantt chart.
Published 2025“…This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”
-
18
Structure and computational framework of IPMMPO.
Published 2025“…This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”
-
19
Data types contained in and .
Published 2025“…This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”
-
20
Data construction of the first and last rows in .
Published 2025“…This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”