Search alternatives:
robust optimization » process optimization (Expand Search), robust estimation (Expand Search), joint optimization (Expand Search)
used optimization » based optimization (Expand Search), led optimization (Expand Search), guided optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based robust » based probes (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
robust optimization » process optimization (Expand Search), robust estimation (Expand Search), joint optimization (Expand Search)
used optimization » based optimization (Expand Search), led optimization (Expand Search), guided optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based robust » based probes (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
-
1
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
2
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
3
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
4
Secure MANET routing with blockchain-enhanced latent encoder coupled GANs and BEPO optimization
Published 2025“…To tackle these challenges, this paper proposes the Blockchain Based Trusted Distributed Routing Scheme for MANET using Latent Encoder Coupled Generative Adversarial Network Optimized with Binary Emperor Penguin Optimizer (LEGAN-BEPO-BCMANET). …”
-
5
-
6
-
7
-
8
-
9
-
10
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
-
11
-
12
Flowchart scheme of the ML-based model.
Published 2024“…<b>G)</b> Deep feature extraction using VGG16. <b>H)</b> Training data comprising 80% of the dataset. …”
-
13
Proposed Algorithm.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
14
-
15
Parameter settings of the comparison algorithms.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
16
-
17
-
18
-
19
-
20