Search alternatives:
based optimization » whale optimization (Expand Search)
used optimization » led optimization (Expand Search), guided optimization (Expand Search), field optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
based optimization » whale optimization (Expand Search)
used optimization » led optimization (Expand Search), guided optimization (Expand Search), field optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
-
1
-
2
-
3
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
-
4
Proposed Algorithm.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
5
Parameter settings of the comparison algorithms.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
6
-
7
Comparisons between ADAM and NADAM optimizers.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
8
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
9
-
10
-
11
-
12
Medium-scale dataset comparative analysis using the number of features selected.
Published 2023Subjects: -
13
Large-scale dataset comparative analysis using the number of features selected.
Published 2023Subjects: -
14
Small-scale dataset comparative analysis using the number of features selected.
Published 2023Subjects: -
15
Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data
Published 2022“…However, ToxCast assays differ in the amount of data and degree of class imbalance (CI). Therefore, the resampling algorithm employed should vary depending on the data distribution to achieve optimal classification performance. …”
-
16
-
17
-
18
-
19
-
20