Search alternatives:
design optimization » bayesian optimization (Expand Search)
where optimization » whale optimization (Expand Search), phase optimization (Expand Search), other optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary task » binary mask (Expand Search)
task design » based design (Expand Search)
data where » data were (Expand Search), dataset where (Expand Search)
design optimization » bayesian optimization (Expand Search)
where optimization » whale optimization (Expand Search), phase optimization (Expand Search), other optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary task » binary mask (Expand Search)
task design » based design (Expand Search)
data where » data were (Expand Search), dataset where (Expand Search)
-
41
-
42
Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP
Published 2022“…The specific work is as follows: (1) design simulated driving experiment and real driving experiment, determine the fatigue state of drivers according to the binary Karolinska Sleepiness Scale (KSS), and establish the fatigue driving sample database. (2) Improved Multi-Task Cascaded Convolutional Networks (MTCNN) and applied to face detection. …”
-
43
PathOlOgics_RBCs Python Scripts.zip
Published 2023“…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …”
-
44
Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf
Published 2020“…In this way, for each binary problem, the CSP algorithm produces features to determine if the specific body part is engaged in the task or not. …”
-
45
Models and Dataset
Published 2025“…The algorithm does not rely on predefined control parameters like crossover or mutation rates, which makes it lightweight and easy to implement for various feature selection and optimization tasks.…”
-
46
Seed mix selection model
Published 2022“…The genetic algorithm then operated over 1000 iterations, applying crossover and mutation processes to optimize bee richness. …”
-
47
Flow diagram of the automatic animal detection and background reconstruction.
Published 2020“…(H) The region of interest is the area where movement has been detected. The algorithm will now restrict the search for the animal to this region. …”
-
48
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”