بدائل البحث:
models optimization » model optimization (توسيع البحث), process optimization (توسيع البحث), wolf optimization (توسيع البحث)
where optimization » whale optimization (توسيع البحث), phase optimization (توسيع البحث), other optimization (توسيع البحث)
library based » laboratory based (توسيع البحث)
based models » based model (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data where » data were (توسيع البحث), dataset where (توسيع البحث)
models optimization » model optimization (توسيع البحث), process optimization (توسيع البحث), wolf optimization (توسيع البحث)
where optimization » whale optimization (توسيع البحث), phase optimization (توسيع البحث), other optimization (توسيع البحث)
library based » laboratory based (توسيع البحث)
based models » based model (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data where » data were (توسيع البحث), dataset where (توسيع البحث)
-
1
-
2
-
3
An optimal solution for the HFS instance.
منشور في 2025"…Finally, based on a large number of instances and real cases, IPMMPO-CP is compared with 9 representative algorithms and 2 latest CP models. …"
-
4
-
5
Proposed Algorithm.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
6
-
7
ReaLigands: A Ligand Library Cultivated from Experiment and Intended for Molecular Computational Catalyst Design
منشور في 2023"…Individual ligands from mononuclear crystal structures were identified using a modified depth-first search algorithm and charge was assigned using a machine learning model based on quantum-chemical calculated features. …"
-
8
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
9
-
10
-
11
Comparison based on hard instances from [79].
منشور في 2025"…Finally, based on a large number of instances and real cases, IPMMPO-CP is compared with 9 representative algorithms and 2 latest CP models. …"
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20