Search alternatives:
using optimization » joint optimization (Expand Search), design optimization (Expand Search), step optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary risk » primary risk (Expand Search), dietary risk (Expand Search)
using optimization » joint optimization (Expand Search), design optimization (Expand Search), step optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary risk » primary risk (Expand Search), dietary risk (Expand Search)
-
1
The flowchart of the proposed algorithm.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
Summary of literature review.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
13
Topic description.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
14
Notations along with their descriptions.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
15
Detail of the topics extracted from DUC2002.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
16
Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf
Published 2024“…Next, a hybrid feature extraction approach is presented leveraging transfer learning from selected deep neural network models, InceptionV3 and DenseNet201, to extract comprehensive feature sets. To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
-
17
Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png
Published 2025“…CardioSpectra formulates athlete profiles as multivariate probabilistic entities across latent diagnostic states, using sparsity-aware inference to generate interpretable risk predictions while optimizing a sensitivity-specificity trade-off tailored to clinical priorities. …”
-
18
-
19
-
20
Variable Selection with Multiply-Imputed Datasets: Choosing Between Stacked and Grouped Methods
Published 2022“…Building on existing work, we (i) derive and implement efficient cyclic coordinate descent and majorization-minimization optimization algorithms for continuous and binary outcome data, (ii) incorporate adaptive shrinkage penalties, (iii) compare these methods through simulation, and (iv) develop an R package <i>miselect</i>. …”