بدائل البحث:
estimation algorithm » optimization algorithms (توسيع البحث), maximization algorithm (توسيع البحث), detection algorithm (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
binary data » dietary data (توسيع البحث)
data pose » data posted (توسيع البحث), data phase (توسيع البحث), data base (توسيع البحث)
estimation algorithm » optimization algorithms (توسيع البحث), maximization algorithm (توسيع البحث), detection algorithm (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
binary data » dietary data (توسيع البحث)
data pose » data posted (توسيع البحث), data phase (توسيع البحث), data base (توسيع البحث)
-
1
-
2
The flowchart of the proposed algorithm.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
3
-
4
Summary of literature review.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
5
Topic description.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
6
Notations along with their descriptions.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
7
Detail of the topics extracted from DUC2002.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
8
Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf
منشور في 2024"…Next, a hybrid feature extraction approach is presented leveraging transfer learning from selected deep neural network models, InceptionV3 and DenseNet201, to extract comprehensive feature sets. To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …"
-
9
Data_Sheet_1_A GLM-based zero-inflated generalized Poisson factor model for analyzing microbiome data.pdf
منشور في 2024"…The complex characteristics of microbiome data, including high dimensionality, zero inflation, and over-dispersion, pose new statistical challenges for downstream analysis.…"
-
10
Data_Sheet_2_A GLM-based zero-inflated generalized Poisson factor model for analyzing microbiome data.ZIP
منشور في 2024"…The complex characteristics of microbiome data, including high dimensionality, zero inflation, and over-dispersion, pose new statistical challenges for downstream analysis.…"
-
11
DataSheet_1_Deep-learning models for image-based gynecological cancer diagnosis: a systematic review and meta- analysis.zip
منشور في 2024"…Two reviewers assessed the articles for eligibility and quality using the QUADAS-2 tool. Data was extracted from each study, and the performance of DL techniques for gynecological cancer classification was estimated by pooling and transforming sensitivity and specificity values using a random-effects model.…"