Showing 1 - 20 results of 27 for search '(( binary dataset when optimization algorithm ) OR ( binary damage codon optimization algorithm ))', query time: 0.56s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

    Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm by Hussein Ali Bardan (21976208)

    Published 2025
    “…In this work, we propose a novel framework that integrates </p><p dir="ltr">Convolutional Neural Networks (CNNs) for image classification and a binary Grey Wolf Optimization (GWO) </p><p dir="ltr">algorithm for feature selection. …”
  6. 6
  7. 7

    ROC curve for binary classification. by Nicodemus Songose Awarayi (18414494)

    Published 2024
    “…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …”
  8. 8

    Confusion matrix for binary classification. by Nicodemus Songose Awarayi (18414494)

    Published 2024
    “…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …”
  9. 9

    Hyperparameters of the LSTM Model. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …”
  10. 10

    Prediction results of individual models. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …”
  11. 11

    The AD-PSO-Guided WOA LSTM framework. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …”
  12. 12
  13. 13
  14. 14
  15. 15

    Variable Selection with Multiply-Imputed Datasets: Choosing Between Stacked and Grouped Methods by Jiacong Du (12035845)

    Published 2022
    “…Building on existing work, we (i) derive and implement efficient cyclic coordinate descent and majorization-minimization optimization algorithms for continuous and binary outcome data, (ii) incorporate adaptive shrinkage penalties, (iii) compare these methods through simulation, and (iv) develop an R package <i>miselect</i>. …”
  16. 16
  17. 17
  18. 18

    Testing results for classifying AD, MCI and NC. by Nicodemus Songose Awarayi (18414494)

    Published 2024
    “…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …”
  19. 19

    Summary of existing CNN models. by Nicodemus Songose Awarayi (18414494)

    Published 2024
    “…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …”
  20. 20