بدائل البحث:
where optimization » whale optimization (توسيع البحث), phase optimization (توسيع البحث), other optimization (توسيع البحث)
binary dataset » final dataset (توسيع البحث), binary data (توسيع البحث), ovary dataset (توسيع البحث)
1 optimization » _ optimization (توسيع البحث), b optimization (توسيع البحث), ai optimization (توسيع البحث)
dataset where » dataset when (توسيع البحث), dataset over (توسيع البحث)
image 1 » image 1_a (توسيع البحث)
where optimization » whale optimization (توسيع البحث), phase optimization (توسيع البحث), other optimization (توسيع البحث)
binary dataset » final dataset (توسيع البحث), binary data (توسيع البحث), ovary dataset (توسيع البحث)
1 optimization » _ optimization (توسيع البحث), b optimization (توسيع البحث), ai optimization (توسيع البحث)
dataset where » dataset when (توسيع البحث), dataset over (توسيع البحث)
image 1 » image 1_a (توسيع البحث)
-
1
-
2
-
3
-
4
A* Path-Finding Algorithm to Determine Cell Connections
منشور في 2025"…Pixel paths were classified using a z-score brightness threshold of 1.21, optimized for noise reduction and accuracy. …"
-
5
-
6
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
منشور في 2025"…In this work, we propose a novel framework that integrates </p><p dir="ltr">Convolutional Neural Networks (CNNs) for image classification and a binary Grey Wolf Optimization (GWO) </p><p dir="ltr">algorithm for feature selection. …"
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
Data_Sheet_1_Pneumonia detection by binary classification: classical, quantum, and hybrid approaches for support vector machine (SVM).pdf
منشور في 2024"…A support vector machine (SVM) is attractive because binary classification can be represented as an optimization problem, in particular as a Quadratic Unconstrained Binary Optimization (QUBO) model, which, in turn, maps naturally to an Ising model, thereby making annealing—classical, quantum, and hybrid—an attractive approach to explore. …"
-
17
-
18
-
19
-
20
Hyperparameters of the LSTM Model.
منشور في 2025"…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …"