يعرض 1 - 15 نتائج من 15 نتيجة بحث عن '(( binary dataset where optimization algorithm ) OR ( binary mask ai optimization algorithm ))', وقت الاستعلام: 0.41s تنقيح النتائج
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

    Hyperparameters of the LSTM Model. حسب Ahmed M. Elshewey (21463867)

    منشور في 2025
    "…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …"
  6. 6

    Prediction results of individual models. حسب Ahmed M. Elshewey (21463867)

    منشور في 2025
    "…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …"
  7. 7

    The AD-PSO-Guided WOA LSTM framework. حسب Ahmed M. Elshewey (21463867)

    منشور في 2025
    "…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …"
  8. 8

    <i>hi</i>PRS algorithm process flow. حسب Michela C. Massi (14599915)

    منشور في 2023
    "…<b>(C)</b> The whole training data is then scanned, searching for these sequences and deriving a re-encoded dataset where interaction terms are binary features (i.e., 1 if sequence <i>i</i> is observed in <i>j</i>-th patient genotype, 0 otherwise). …"
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14

    Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles حسب Soham Savarkar (21811825)

    منشور في 2025
    "…</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…"
  15. 15