بدائل البحث:
based optimization » whale optimization (توسيع البحث)
binary screen » library screen (توسيع البحث), primary screen (توسيع البحث)
screen based » screened based (توسيع البحث), screening based (توسيع البحث)
binary edge » binary image (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
binary screen » library screen (توسيع البحث), primary screen (توسيع البحث)
screen based » screened based (توسيع البحث), screening based (توسيع البحث)
binary edge » binary image (توسيع البحث)
-
1
-
2
-
3
-
4
Comparisons of computation rate performance for different offloading algorithms.for N = 10, 20, 30.
منشور في 2025الموضوعات: -
5
Comparison of total time consumed for different offloading algorithms.for N = 10, 20, 30.
منشور في 2025الموضوعات: -
6
-
7
-
8
-
9
-
10
-
11
The evolution of the Wireless Power Transfer (WPT) time fraction β over simulation frames.
منشور في 2025الموضوعات: -
12
-
13
CDF of task latency, approximated as the inverse of the achieved computation rate.
منشور في 2025الموضوعات: -
14
-
15
-
16
Supplementary file 1_Encodings of the weighted MAX k-CUT problem on qubit systems.pdf
منشور في 2025"…This study explores encoding methods for MAX k-CUT on qubit systems by utilizing quantum approximate optimization algorithms (QAOA) and addressing the challenge of encoding integer values on quantum devices with binary variables. …"
-
17
-
18
Identification and quantitation of clinically relevant microbes in patient samples: Comparison of three k-mer based classifiers for speed, accuracy, and sensitivity
منشور في 2019"…We tested the accuracy, sensitivity, and resource requirements of three top metagenomic taxonomic classifiers that use fast k-mer based algorithms: Centrifuge, CLARK, and KrakenUniq. …"
-
19
-
20
Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf
منشور في 2024"…Next, a hybrid feature extraction approach is presented leveraging transfer learning from selected deep neural network models, InceptionV3 and DenseNet201, to extract comprehensive feature sets. To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …"