يعرض 1 - 20 نتائج من 22 نتيجة بحث عن '(( binary edge _ optimization algorithm ) OR ( binary screen based optimization algorithm ))', وقت الاستعلام: 0.50s تنقيح النتائج
  1. 1

    Proposed Algorithm. حسب Hend Bayoumi (22693738)

    منشور في 2025
    الموضوعات:
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6

    An Example of a WPT-MEC Network. حسب Hend Bayoumi (22693738)

    منشور في 2025
    الموضوعات:
  7. 7

    Related Work Summary. حسب Hend Bayoumi (22693738)

    منشور في 2025
    الموضوعات:
  8. 8

    Simulation parameters. حسب Hend Bayoumi (22693738)

    منشور في 2025
    الموضوعات:
  9. 9

    Training losses for N = 10. حسب Hend Bayoumi (22693738)

    منشور في 2025
    الموضوعات:
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

    Summary of Notations Used in this paper. حسب Hend Bayoumi (22693738)

    منشور في 2025
    الموضوعات:
  16. 16

    Supplementary file 1_Encodings of the weighted MAX k-CUT problem on qubit systems.pdf حسب Franz G. Fuchs (22776248)

    منشور في 2025
    "…This study explores encoding methods for MAX k-CUT on qubit systems by utilizing quantum approximate optimization algorithms (QAOA) and addressing the challenge of encoding integer values on quantum devices with binary variables. …"
  17. 17
  18. 18

    Identification and quantitation of clinically relevant microbes in patient samples: Comparison of three k-mer based classifiers for speed, accuracy, and sensitivity حسب George S. Watts (7962206)

    منشور في 2019
    "…We tested the accuracy, sensitivity, and resource requirements of three top metagenomic taxonomic classifiers that use fast k-mer based algorithms: Centrifuge, CLARK, and KrakenUniq. …"
  19. 19
  20. 20

    Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf حسب Muhammad Awais (263096)

    منشور في 2024
    "…Next, a hybrid feature extraction approach is presented leveraging transfer learning from selected deep neural network models, InceptionV3 and DenseNet201, to extract comprehensive feature sets. To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …"