يعرض 1 - 16 نتائج من 16 نتيجة بحث عن '(( binary emerge design optimization algorithm ) OR ( binary due based optimization algorithm ))', وقت الاستعلام: 0.48s تنقيح النتائج
  1. 1
  2. 2

    Triplet Matching for Estimating Causal Effects With Three Treatment Arms: A Comparative Study of Mortality by Trauma Center Level حسب Giovanni Nattino (561797)

    منشور في 2021
    "…Few studies, however, have used matching designs with more than two groups, due to the complexity of matching algorithms. …"
  3. 3

    Proposed Algorithm. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  4. 4

    Comparisons between ADAM and NADAM optimizers. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  5. 5

    QSAR model for predicting neuraminidase inhibitors of influenza A viruses (H1N1) based on adaptive grasshopper optimization algorithm حسب Z.Y. Algamal (5547620)

    منشور في 2020
    "…Obtaining a reliable QSAR model with few descriptors is an essential procedure in chemometrics. The binary grasshopper optimization algorithm (BGOA) is a new meta-heuristic optimization algorithm, which has been used successfully to perform feature selection. …"
  6. 6

    Secure MANET routing with blockchain-enhanced latent encoder coupled GANs and BEPO optimization حسب Sandeep Jagonda Patil (22048337)

    منشور في 2025
    "…To tackle these challenges, this paper proposes the Blockchain Based Trusted Distributed Routing Scheme for MANET using Latent Encoder Coupled Generative Adversarial Network Optimized with Binary Emperor Penguin Optimizer (LEGAN-BEPO-BCMANET). …"
  7. 7
  8. 8

    An Example of a WPT-MEC Network. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  9. 9

    Related Work Summary. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  10. 10

    Simulation parameters. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  11. 11

    Training losses for N = 10. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  12. 12

    Normalized computation rate for N = 10. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  13. 13

    Summary of Notations Used in this paper. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  14. 14

    A new fast filtering algorithm for a 3D point cloud based on RGB-D information حسب Chaochuan Jia (7256237)

    منشور في 2019
    "…This method aligns the color image to the depth image, and the color mapping image is converted to an HSV image. Then, the optimal segmentation threshold of the V image that is calculated by using the Otsu algorithm is applied to segment the color mapping image into a binary image, which is used to extract the valid point cloud from the original point cloud with outliers. …"
  15. 15

    Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf حسب Muhammad Awais (263096)

    منشور في 2024
    "…Next, a hybrid feature extraction approach is presented leveraging transfer learning from selected deep neural network models, InceptionV3 and DenseNet201, to extract comprehensive feature sets. To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …"
  16. 16

    Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx حسب Ali Nabavi (21097424)

    منشور في 2025
    "…., blood lead and cadmium levels) were analyzed as features, with hearing loss status—defined as a pure-tone average threshold exceeding 25 dB HL across 500, 1,000, 2000, and 4,000 Hz in the better ear—serving as the binary outcome. Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …"