Search alternatives:
access optimization » process optimization (Expand Search), stress optimization (Expand Search), process optimisation (Expand Search)
based optimization » whale optimization (Expand Search)
binary fast » binary mask (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data access » data across (Expand Search), water access (Expand Search)
fast based » test based (Expand Search), case based (Expand Search), art based (Expand Search)
access optimization » process optimization (Expand Search), stress optimization (Expand Search), process optimisation (Expand Search)
based optimization » whale optimization (Expand Search)
binary fast » binary mask (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data access » data across (Expand Search), water access (Expand Search)
fast based » test based (Expand Search), case based (Expand Search), art based (Expand Search)
-
1
-
2
-
3
A new fast filtering algorithm for a 3D point cloud based on RGB-D information
Published 2019“…This method aligns the color image to the depth image, and the color mapping image is converted to an HSV image. Then, the optimal segmentation threshold of the V image that is calculated by using the Otsu algorithm is applied to segment the color mapping image into a binary image, which is used to extract the valid point cloud from the original point cloud with outliers. …”
-
4
Proposed Algorithm.
Published 2025“…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
-
5
Comparisons between ADAM and NADAM optimizers.
Published 2025“…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
-
6
Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx
Published 2025“…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …”
-
7
An Example of a WPT-MEC Network.
Published 2025“…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
-
8
Related Work Summary.
Published 2025“…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
-
9
Simulation parameters.
Published 2025“…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
-
10
Training losses for N = 10.
Published 2025“…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
-
11
Normalized computation rate for N = 10.
Published 2025“…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
-
12
Summary of Notations Used in this paper.
Published 2025“…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
-
13
Identification and quantitation of clinically relevant microbes in patient samples: Comparison of three k-mer based classifiers for speed, accuracy, and sensitivity
Published 2019“…We tested the accuracy, sensitivity, and resource requirements of three top metagenomic taxonomic classifiers that use fast k-mer based algorithms: Centrifuge, CLARK, and KrakenUniq. …”
-
14
-
15
Bayesian sequential design for sensitivity experiments with hybrid responses
Published 2023“…To deal with the problem of complex computation involved in searching for optimal designs, fast algorithms are presented using two strategies to approximate the optimal criterion, denoted as SI-optimal design and Bayesian D-optimal design, respectively. …”
-
16
Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield...
Published 2022“…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …”
-
17
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…Data sources included peer-reviewed publications and reputable open-access repositories such as the NanoPharos database. …”