Search alternatives:
design optimization » bayesian optimization (Expand Search)
models optimization » model optimization (Expand Search), process optimization (Expand Search), wolf optimization (Expand Search)
binary first » bars first (Expand Search), binary pairs (Expand Search)
first design » test design (Expand Search), post design (Expand Search)
binary mask » binary image (Expand Search)
mask models » risk models (Expand Search), base models (Expand Search), asr models (Expand Search)
design optimization » bayesian optimization (Expand Search)
models optimization » model optimization (Expand Search), process optimization (Expand Search), wolf optimization (Expand Search)
binary first » bars first (Expand Search), binary pairs (Expand Search)
first design » test design (Expand Search), post design (Expand Search)
binary mask » binary image (Expand Search)
mask models » risk models (Expand Search), base models (Expand Search), asr models (Expand Search)
-
1
-
2
-
3
-
4
Datasets and their properties.
Published 2023“…The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. …”
-
5
Parameter settings.
Published 2023“…The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. …”
-
6
Parameter settings of the comparison algorithms.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
7
A* Path-Finding Algorithm to Determine Cell Connections
Published 2025“…</p><p dir="ltr">Astrocytes were dissociated from E18 mouse cortical tissue, and image data were processed using a Cellpose 2.0 model to mask nuclei. Pixel paths were classified using a z-score brightness threshold of 1.21, optimized for noise reduction and accuracy. …”
-
8
Flowchart scheme of the ML-based model.
Published 2024“…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”
-
9
Comparison in terms of the sensitivity.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
10
Parameter sensitivity of BIMGO.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
11
Details of the medical datasets.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
12
The flowchart of IMGO.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
13
Comparison in terms of the selected features.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
14
Iterative chart of control factor.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
15
Details of 23 basic benchmark functions.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
16
Related researches.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
17
S1 Dataset -
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
18
MCLP_quantum_annealer_V0.5
Published 2025“…The application of quantum computing to solve the maximum coverage location problem presents numerous challenges in areas like problem transformation, quantum sampling solutions, and spatial relationship verification. This paper first proposes the QUBO-MCLP algorithm workflow and designs the Transformation Operator for Inequality Constraints Considering the Capacity of Accessible Providers (TOICCAP), which accounts for the scale of accessible supply points. …”
-
19
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
20
Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf
Published 2020“…And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …”