Search alternatives:
based optimization » whale optimization (Expand Search)
binary fitting » linear fitting (Expand Search)
fitting based » findings based (Expand Search)
binary field » bias field (Expand Search)
field global » first global (Expand Search), free global (Expand Search)
based optimization » whale optimization (Expand Search)
binary fitting » linear fitting (Expand Search)
fitting based » findings based (Expand Search)
binary field » bias field (Expand Search)
field global » first global (Expand Search), free global (Expand Search)
-
41
The flowchart of IMGO.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
42
Comparison in terms of the selected features.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
43
Iterative chart of control factor.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
44
Details of 23 basic benchmark functions.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
45
Related researches.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
46
S1 Dataset -
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
47
Parameter settings.
Published 2024“…<div><p>Differential Evolution (DE) is widely recognized as a highly effective evolutionary algorithm for global optimization. It has proven its efficacy in tackling diverse problems across various fields and real-world applications. …”
-
48
-
49
-
50
Thesis-RAMIS-Figs_Slides
Published 2024“…<br><br>It is important to emphasize that no previous work have addressed the optimal sensing problem covered in this thesis for characterization of geological fields in the context of \emph{<i>MPS</i>}. …”
-
51
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Overall, the models exhibited a robust fit for all cooking times, showcasing the significant potential of NIRs as a high-throughput phenotyping tool for classifying cassava genotypes based on cooking time.…”
-
52
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Overall, the models exhibited a robust fit for all cooking times, showcasing the significant potential of NIRs as a high-throughput phenotyping tool for classifying cassava genotypes based on cooking time.…”
-
53
Seed mix selection model
Published 2022“…</p> <p> </p> <p>We applied the seed mix selection model using a binary genetic algorithm to select seed mixes (R package ‘GA’; Scrucca 2013; Scrucca 2017). …”