بدائل البحث:
codings optimization » codon optimization (توسيع البحث), joint optimization (توسيع البحث), routing optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
forest based » forest area (توسيع البحث), test based (توسيع البحث), forest land (توسيع البحث)
data codings » data recordings (توسيع البحث), data encoding (توسيع البحث), data codes (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
codings optimization » codon optimization (توسيع البحث), joint optimization (توسيع البحث), routing optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
forest based » forest area (توسيع البحث), test based (توسيع البحث), forest land (توسيع البحث)
data codings » data recordings (توسيع البحث), data encoding (توسيع البحث), data codes (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data
منشور في 2022"…Therefore, the resampling algorithm employed should vary depending on the data distribution to achieve optimal classification performance. …"
-
9
-
10
-
11
Flowchart scheme of the ML-based model.
منشور في 2024"…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …"
-
12
Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx
منشور في 2025"…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …"
-
13
-
14
SHAP bar plot.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
15
Sample screening flowchart.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
16
Descriptive statistics for variables.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
17
SHAP summary plot.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
18
ROC curves for the test set of four models.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
19
Display of the web prediction interface.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
20