يعرض 1 - 20 نتائج من 25 نتيجة بحث عن '(( binary forest global optimization algorithm ) OR ( binary risk models optimization algorithm ))*', وقت الاستعلام: 0.53s تنقيح النتائج
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    ROC curves for the test set of four models. حسب Meng Cao (105914)

    منشور في 2025
    الموضوعات:
  9. 9
  10. 10
  11. 11

    Hyperparameters of the LSTM Model. حسب Ahmed M. Elshewey (21463867)

    منشور في 2025
    "…The AD-PSO-Guided WOA overcomes limitations of conventional optimization algorithms, such as premature convergence by balancing global search (exploration) and local refinement (exploitation). …"
  12. 12

    The AD-PSO-Guided WOA LSTM framework. حسب Ahmed M. Elshewey (21463867)

    منشور في 2025
    "…The AD-PSO-Guided WOA overcomes limitations of conventional optimization algorithms, such as premature convergence by balancing global search (exploration) and local refinement (exploitation). …"
  13. 13

    Prediction results of individual models. حسب Ahmed M. Elshewey (21463867)

    منشور في 2025
    "…The AD-PSO-Guided WOA overcomes limitations of conventional optimization algorithms, such as premature convergence by balancing global search (exploration) and local refinement (exploitation). …"
  14. 14

    SHAP bar plot. حسب Meng Cao (105914)

    منشور في 2025
    الموضوعات:
  15. 15

    Display of the web prediction interface. حسب Meng Cao (105914)

    منشور في 2025
    الموضوعات:
  16. 16

    Sample screening flowchart. حسب Meng Cao (105914)

    منشور في 2025
    الموضوعات:
  17. 17

    Descriptive statistics for variables. حسب Meng Cao (105914)

    منشور في 2025
    الموضوعات:
  18. 18

    SHAP summary plot. حسب Meng Cao (105914)

    منشور في 2025
    الموضوعات:
  19. 19

    Unraveling Adsorbate-Induced Structural Evolution of Iron Carbide Nanoparticles حسب Peter S. Rice (11805875)

    منشور في 2025
    "…For this purpose, we have developed a general procedure that we use to model an experimentally relevant 270-atom Fe<sub>182</sub>C<sub>88</sub> NP using the neural network-assisted stochastic surface walk global optimization algorithm (SSW-NN). Once generated, the Fe<sub>182</sub>C<sub>88</sub> NP active sites and particle morphology are thoroughly characterized before the effects of syngas adsorbate interactions are explored by using DFT and molecular dynamics simulations. …"
  20. 20