Search alternatives:
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
code optimization » codon optimization (Expand Search), dose optimization (Expand Search), cost optimization (Expand Search)
forest model » best model (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data code » data model (Expand Search), data came (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
code optimization » codon optimization (Expand Search), dose optimization (Expand Search), cost optimization (Expand Search)
forest model » best model (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data code » data model (Expand Search), data came (Expand Search)
-
41
Table_1_Computational prediction of promotors in Agrobacterium tumefaciens strain C58 by using the machine learning technique.DOCX
Published 2023“…The obtained features were optimized by using correlation and the mRMR-based algorithm. …”
-
42
Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP
Published 2022“…In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …”
-
43
Supplementary Material 8
Published 2025“…</p><p dir="ltr">When applied to AMR prediction, SMOTE enhances the ability of classification models to accurately identify resistant <i>Escherichia coli</i> strains by balancing the dataset, ensuring that machine learning algorithms do not overlook rare resistance patterns. …”
-
44
-
45
Fortran & C++: design fractal-type optical diffractive element
Published 2022“…</p> <p>(4) export geometry/optics raw data and figures for binary DOE devices.</p> <p><br></p> <p>[Wolfram Mathematica code "square_triangle_DOE.nb"]:</p> <p>read the optimized binary DOE document (after Fortran & C++ code) to calculate its diffractive fields for comparison.…”
-
46
Table_1_Machine Learning Techniques in Blood Pressure Management During the Acute Phase of Ischemic Stroke.DOCX
Published 2022“…Implementation of synthetic minority oversampling technique was used to balance the dataset according to different antihypertensive treatments. The model performance of the decision tree was compared to the performance of neural networks, random forest, and logistic regression models.…”
-
47
An intelligent decision-making system for embryo transfer in reproductive technology: a machine learning-based approach
Published 2025“…Binary classification models were developed to classify cases into two groups: those transferring two or fewer embryos and those transferring three or four. …”
-
48
Data_Sheet_1_A Data-Driven Framework for Identifying Intensive Care Unit Admissions Colonized With Multidrug-Resistant Organisms.docx
Published 2022“…</p>Materials and Methods<p>Leveraging data from electronic healthcare records and a unique MDRO universal screening program, we developed a data-driven modeling framework to predict MRSA, VRE, and CRE colonization upon intensive care unit (ICU) admission, and identified the associated socio-demographic and clinical factors using logistic regression (LR), random forest (RF), and XGBoost algorithms. …”
-
49
Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx
Published 2025“…., blood lead and cadmium levels) were analyzed as features, with hearing loss status—defined as a pure-tone average threshold exceeding 25 dB HL across 500, 1,000, 2000, and 4,000 Hz in the better ear—serving as the binary outcome. Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …”
-
50
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”