بدائل البحث:
codon optimization » wolf optimization (توسيع البحث)
eeg classification » event classification (توسيع البحث), high classification (توسيع البحث), _ classification (توسيع البحث)
binary game » binary image (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data eeg » data e (توسيع البحث), data el (توسيع البحث), data eco (توسيع البحث)
codon optimization » wolf optimization (توسيع البحث)
eeg classification » event classification (توسيع البحث), high classification (توسيع البحث), _ classification (توسيع البحث)
binary game » binary image (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data eeg » data e (توسيع البحث), data el (توسيع البحث), data eco (توسيع البحث)
-
1
-
2
Timeline of a single trial for dataset 1.
منشور في 2023"…Six different classification algorithms, namely support vector machine, linear discriminant analysis, k-nearest neighbor, naïve Bayes, decision trees, and logistic regression, have been compared to classify the EEG data accurately. …"
-
3
Block diagram of proposed methodology.
منشور في 2023"…Six different classification algorithms, namely support vector machine, linear discriminant analysis, k-nearest neighbor, naïve Bayes, decision trees, and logistic regression, have been compared to classify the EEG data accurately. …"
-
4
Timeline of a single trial for dataset 2.
منشور في 2023"…Six different classification algorithms, namely support vector machine, linear discriminant analysis, k-nearest neighbor, naïve Bayes, decision trees, and logistic regression, have been compared to classify the EEG data accurately. …"
-
5
iNCog-EEG (ideal vs. Noisy Cognitive EEG for Workload Assessment) Dataset
منشور في 2025"…</p><h3>Applications</h3><p dir="ltr">This dataset can be applied to a wide range of research areas, including:</p><ul><li>EEG signal denoising and artifact rejection</li><li>Binary and hierarchical <b>cognitive workload classification</b></li><li>Development of <b>robust Brain–Computer Interfaces (BCIs)</b></li><li>Benchmarking algorithms under <b>ideal and noisy conditions</b></li><li>Multitasking and mental workload assessment in <b>real-world scenarios</b></li></ul><p dir="ltr">By combining controlled multitasking protocols with deliberately introduced environmental noise, <b>iNCog-EEG provides a comprehensive benchmark</b> for advancing EEG-based workload recognition systems in both clean and challenging conditions.…"