يعرض 1 - 20 نتائج من 37 نتيجة بحث عن '(( binary game codon optimization algorithm ) OR ( binary data first classification algorithm ))', وقت الاستعلام: 0.57s تنقيح النتائج
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    Datasets and their properties. حسب Olaide N. Oyelade (14047002)

    منشور في 2023
    "…In addition, we designed nested transfer (NT) functions and investigated the influence of the function on the level-1 optimizer. The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. …"
  8. 8

    Parameter settings. حسب Olaide N. Oyelade (14047002)

    منشور في 2023
    "…In addition, we designed nested transfer (NT) functions and investigated the influence of the function on the level-1 optimizer. The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. …"
  9. 9
  10. 10

    DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx حسب Massaine Bandeira e Sousa (7866242)

    منشور في 2024
    "…Two NIRs devices, the portable QualitySpec® Trek (QST) and the benchtop NIRFlex N-500 were used to collect spectral data. Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …"
  11. 11

    The overview of the proposed method. حسب Seyed Mahdi Hosseiniyan Khatibi (16791475)

    منشور في 2023
    "…<p>Five main steps, including reading, preprocessing, feature selection, classification, and association rule mining were applied to the mRNA expression data. 1) Required data was collected from the TCGA repository and got organized during the reading step. 2) The pre-processing step includes two sub-steps, nested cross-validation and data normalization. 3) The feature-selection step contains two parts: the filter method based on a t-test and the wrapper method based on binary Non-Dominated Sorting Genetic Algorithm II (NSGAII) for mRNA data, in which candidate mRNAs with more relevance to early-stage and late-stage Papillary Thyroid Cancer (PTC) were selected. 4) Multi-classifier models were utilized to evaluate the discrimination power of the selected mRNAs. 5) The Association Rule Mining method was employed to discover the possible hidden relationship between the selected mRNAs and early and late stages of PTC firstly, and the complex relationship among the selected mRNAs secondly.…"
  12. 12

    Data_Sheet_3_sigFeature: Novel Significant Feature Selection Method for Classification of Gene Expression Data Using Support Vector Machine and t Statistic.docx حسب Pijush Das (3196647)

    منشور في 2020
    "…The “sigFeature” R package is centered around a function called “sigFeature,” which provides automatic selection of features for the binary classification. Using six publicly available microarray data sets (downloaded from Gene Expression Omnibus) with different biological attributes, we further compared the performance of “sigFeature” to three other feature selection algorithms. …"
  13. 13

    Data_Sheet_2_sigFeature: Novel Significant Feature Selection Method for Classification of Gene Expression Data Using Support Vector Machine and t Statistic.docx حسب Pijush Das (3196647)

    منشور في 2020
    "…The “sigFeature” R package is centered around a function called “sigFeature,” which provides automatic selection of features for the binary classification. Using six publicly available microarray data sets (downloaded from Gene Expression Omnibus) with different biological attributes, we further compared the performance of “sigFeature” to three other feature selection algorithms. …"
  14. 14

    Data_Sheet_1_sigFeature: Novel Significant Feature Selection Method for Classification of Gene Expression Data Using Support Vector Machine and t Statistic.docx حسب Pijush Das (3196647)

    منشور في 2020
    "…The “sigFeature” R package is centered around a function called “sigFeature,” which provides automatic selection of features for the binary classification. Using six publicly available microarray data sets (downloaded from Gene Expression Omnibus) with different biological attributes, we further compared the performance of “sigFeature” to three other feature selection algorithms. …"
  15. 15

    Neyman-Pearson Multi-Class Classification via Cost-Sensitive Learning حسب Ye Tian (220278)

    منشور في 2024
    "…In this work, we tackle the multi-class NP problem by establishing a connection with the CS problem via strong duality and propose two algorithms. We extend the concept of NP oracle inequalities, crucial in binary classifications, to NP oracle properties in the multi-class context. …"
  16. 16

    Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx حسب Massaine Bandeira e Sousa (7866242)

    منشور في 2024
    "…Two NIRs devices, the portable QualitySpec® Trek (QST) and the benchtop NIRFlex N-500 were used to collect spectral data. Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …"
  17. 17

    Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19. حسب Jiaqing Luo (10975030)

    منشور في 2021
    "…EVAL1: The correlation between input features <i>x</i>∈<i>X</i> and output features y∈<i>Y</i>, <i>R</i>[<i>x,y</i>] or <i>R</i>[<i>y,x</i>]; EVAL2: The correlation between input features <i>x</i>∈<i>X</i> and labeled features v∈<i>L</i>, <i>R</i>[<i>x,v</i>] or <i>R</i>[<i>v,x</i>]; Subset: The optimal input feature subset. (D). The MCDM algorithm-Stage 4. Performance evaluation, this stage is to measure the performance of the binary classification by ACC, TPR, FPR and F1 score.…"
  18. 18

    Development and validation of an electronic health record-based algorithm for identifying TBI in the VA: A VA Million Veteran Program study حسب Victoria C. Merritt (8581929)

    منشور في 2024
    "…TBI-PheCAP generally performed better than other classification methods, with equivalent or higher sensitivity and PPV than existing rules-based TBI algorithms and MVP TBI-related survey data. …"
  19. 19

    Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf حسب Muhammad Awais (263096)

    منشور في 2024
    "…This work presents an efficient pipeline for binary and subtype classification of acute lymphoblastic leukemia. …"
  20. 20

    PathOlOgics_RBCs Python Scripts.zip حسب Ahmed Elsafty (16943883)

    منشور في 2023
    "…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …"