Showing 61 - 80 results of 97 for search '(( binary game codon optimization algorithm ) OR ( binary data process classification algorithm ))', query time: 0.69s Refine Results
  1. 61
  2. 62

    Algoritmo de detección de odio en español (Algorithm for detection of hate speech in Spanish) by Elias Said-Hung (10790310)

    Published 2024
    “…</li></ul><h2>Training Process</h2><h3>Pre-workout</h3><ul><li>Batch size: 16</li><li>Epochs: 5</li><li>Learning rate: 2e-5 with 10% warmup steps</li><li>Early stopping with patience=2</li></ul><h3>Fine-tuning</h3><ul><li>Batch size: 128</li><li>Epochs: 5</li><li>Learning rate: 2e-5 with 10% warmup steps</li><li>Early stopping with patience=2</li><li>Custom metrics:</li><li>Recall for non-hate class</li><li>Precision for hate class</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.9 (non-hate)</li><li>Precision at recall=0.9 (hate)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Metrics by class</li><li>Confusion matrix</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required (see requirements.txt for the full list):</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li></ul><h2>Usage</h2><p dir="ltr">The model expects input data with the following specifications:</p><ol><li><b>Data Format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Mandatory column name: <code>text</code> (type string)</li><li>Optional column name: <code>label</code> (type integer, 0 or 1) if available for evaluation</li></ul><ol><li><b>Text Preprocessing</b>:</li></ol><ul><li>Text will be automatically converted to lowercase during processing</li><li>Maximum length: 128 tokens (longer texts will be truncated)</li><li>Special characters, URLs, and emojis must remain in the text (the tokenizer handles these)</li></ul><ol><li><b>Label Encoding</b>:</li></ol><ul><li><code>0</code> = No hateful content (including neutral/positive content)</li><li>1 = Hate speech</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at:Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
  3. 63
  4. 64

    DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx by Massaine Bandeira e Sousa (7866242)

    Published 2024
    “…Two NIRs devices, the portable QualitySpec® Trek (QST) and the benchtop NIRFlex N-500 were used to collect spectral data. Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …”
  5. 65

    DataSheet_1_Patient-Level Effectiveness Prediction Modeling for Glioblastoma Using Classification Trees.docx by Tine Geldof (8380125)

    Published 2020
    “…Secondly, a classification tree algorithm was trained and validated for dividing individual patients into treatment response and non-response groups. …”
  6. 66
  7. 67

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) by Daniel Pérez Palau (11097348)

    Published 2024
    “…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
  8. 68
  9. 69

    GSE96058 information. by Sepideh Zununi Vahed (9861298)

    Published 2024
    “…</p><p>Results</p><p>In this study, five main steps were followed for the analysis of mRNA expression data: reading, preprocessing, feature selection, classification, and SHAP algorithm. …”
  10. 70

    The performance of classifiers. by Sepideh Zununi Vahed (9861298)

    Published 2024
    “…</p><p>Results</p><p>In this study, five main steps were followed for the analysis of mRNA expression data: reading, preprocessing, feature selection, classification, and SHAP algorithm. …”
  11. 71

    Related studies on IDS using deep learning. by Arshad Hashmi (13835488)

    Published 2024
    “…The model’s binary and multi-class classification accuracies on the UNSW-NB15 dataset are 99.56% and 99.45%, respectively. …”
  12. 72

    The architecture of the BI-LSTM model. by Arshad Hashmi (13835488)

    Published 2024
    “…The model’s binary and multi-class classification accuracies on the UNSW-NB15 dataset are 99.56% and 99.45%, respectively. …”
  13. 73

    Comparison of accuracy and DR on UNSW-NB15. by Arshad Hashmi (13835488)

    Published 2024
    “…The model’s binary and multi-class classification accuracies on the UNSW-NB15 dataset are 99.56% and 99.45%, respectively. …”
  14. 74

    Comparison of DR and FPR of UNSW-NB15. by Arshad Hashmi (13835488)

    Published 2024
    “…The model’s binary and multi-class classification accuracies on the UNSW-NB15 dataset are 99.56% and 99.45%, respectively. …”
  15. 75

    Image1_Benchmark of Data Processing Methods and Machine Learning Models for Gut Microbiome-Based Diagnosis of Inflammatory Bowel Disease.eps by Ryszard Kubinski (12105983)

    Published 2022
    “…With an abundance of methods, there is a need to benchmark the performance and generalizability of various machine learning pipelines (from data processing to training a machine learning model) for microbiome-based IBD diagnostic tools. …”
  16. 76

    Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx by Massaine Bandeira e Sousa (7866242)

    Published 2024
    “…Two NIRs devices, the portable QualitySpec® Trek (QST) and the benchtop NIRFlex N-500 were used to collect spectral data. Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …”
  17. 77

    Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19. by Jiaqing Luo (10975030)

    Published 2021
    “…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …”
  18. 78

    PathOlOgics_RBCs Python Scripts.zip by Ahmed Elsafty (16943883)

    Published 2023
    “…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …”
  19. 79
  20. 80