Search alternatives:
text classification » _ classification (Expand Search), image classification (Expand Search), based classification (Expand Search)
codon optimization » wolf optimization (Expand Search)
binary game » binary image (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
text classification » _ classification (Expand Search), image classification (Expand Search), based classification (Expand Search)
codon optimization » wolf optimization (Expand Search)
binary game » binary image (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
-
1
-
2
-
3
-
4
-
5
Calibration curves for NLP classification.
Published 2020“…These curves represent different combinations of text featurization (BOW, tf-idf, GloVe) and binary classification algorithms (Logistic Regression, RF, RNN). …”
-
6
Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports
Published 2020“…The aim of this study was to develop a natural language processing (NLP) algorithm for binary classification (single metastasis versus two or more metastases) in bone scintigraphy reports of patients undergoing surgery for bone metastases.…”
-
7
Receiver operating curves for NLP classification.
Published 2020“…These curves represent different combinations of text featurization (BOW, tf-idf, GloVe) and binary classification algorithms (Logistic Regression, k-NN, CART, OCT, OCT-H, RF, RNN). …”
-
8
Natural language processing and machine learning algorithm to identify brain MRI reports with acute ischemic stroke
Published 2019“…Labeling for AIS was performed manually, identifying clinical notes. We applied binary logistic regression, naïve Bayesian classification, single decision tree, and support vector machine for the binary classifiers, and we assessed performance of the algorithms by F1-measure. …”
-
9
-
10
-
11
-
12
-
13
-
14
Algoritmo de detección de odio en español (Algorithm for detection of hate speech in Spanish)
Published 2024“…</li></ul><h2>Training Process</h2><h3>Pre-workout</h3><ul><li>Batch size: 16</li><li>Epochs: 5</li><li>Learning rate: 2e-5 with 10% warmup steps</li><li>Early stopping with patience=2</li></ul><h3>Fine-tuning</h3><ul><li>Batch size: 128</li><li>Epochs: 5</li><li>Learning rate: 2e-5 with 10% warmup steps</li><li>Early stopping with patience=2</li><li>Custom metrics:</li><li>Recall for non-hate class</li><li>Precision for hate class</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.9 (non-hate)</li><li>Precision at recall=0.9 (hate)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Metrics by class</li><li>Confusion matrix</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required (see requirements.txt for the full list):</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li></ul><h2>Usage</h2><p dir="ltr">The model expects input data with the following specifications:</p><ol><li><b>Data Format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Mandatory column name: <code>text</code> (type string)</li><li>Optional column name: <code>label</code> (type integer, 0 or 1) if available for evaluation</li></ul><ol><li><b>Text Preprocessing</b>:</li></ol><ul><li>Text will be automatically converted to lowercase during processing</li><li>Maximum length: 128 tokens (longer texts will be truncated)</li><li>Special characters, URLs, and emojis must remain in the text (the tokenizer handles these)</li></ul><ol><li><b>Label Encoding</b>:</li></ol><ul><li><code>0</code> = No hateful content (including neutral/positive content)</li><li>1 = Hate speech</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at:Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
15
-
16
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</p><p dir="ltr">Más información:</p><ul><li><a href="https://www.hatemedia.es/" rel="nofollow" target="_blank">https://www.hatemedia.es/</a> o contactar con: <a href="mailto:elias.said@unir.net" target="_blank">elias.said@unir.net</a></li><li>Este algoritmo está relacionado con el algoritmo de clasificación de odio/no odio, desarrollado también por los autores: <a href="https://github.com/esaidh266/Algorithm-for-detection-of-hate-speech-in-Spanish" target="_blank">https://github.com/esaidh266/Algorithm-for-detection-of-hate-speech-in-Spanish</a></li><li>Este algoritmo está relacionado con el algoritmo de clasificación de expresiones de odio por intensidades en español, desarrollado también por los autores: <a href="https://github.com/esaidh266/Algorithm-for-classifying-hate-expressions-by-intensities-in-Spanish" target="_blank">https://github.com/esaidh266/Algorithm-for-classifying-hate-expressions-by-intensities-in-Spanish</a></li></ul>Hate Speech Type Classification Model<p dir="ltr">This code implements a hate speech type classification system using the RoBERTuito model (a Spanish version of RoBERTa) to detect and categorize different types of hate speech in texts.…”