Showing 1 - 9 results of 9 for search '(( binary health design optimization algorithm ) OR ( binary image work optimization algorithm ))', query time: 0.38s Refine Results
  1. 1
  2. 2

    A* Path-Finding Algorithm to Determine Cell Connections by Max Weng (22327159)

    Published 2025
    “…Future work aims to generalize this algorithm for broader biological applications by training additional Cellpose models and adapting the A* framework.…”
  3. 3

    Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm by Hussein Ali Bardan (21976208)

    Published 2025
    “…In this work, we propose a novel framework that integrates </p><p dir="ltr">Convolutional Neural Networks (CNNs) for image classification and a binary Grey Wolf Optimization (GWO) </p><p dir="ltr">algorithm for feature selection. …”
  4. 4
  5. 5
  6. 6
  7. 7

    Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf by Muhammad Awais (263096)

    Published 2024
    “…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
  8. 8

    Thesis-RAMIS-Figs_Slides by Felipe Santibañez-Leal (10967991)

    Published 2024
    “…Importantly, this strategy locates samples adaptively on the transition between facies which improves the performance of conventional \emph{<i>MPS</i>} algorithms. In conclusion, this work shows that preferential sampling can contribute in \emph{<i>MPS</i>} even at very small sampling regimes and, as a corollary, demonstrates that prior models (obtained form a training image) can be used effectively not only to simulate non-sensed variables of the field, but to decide where to measure next.…”
  9. 9

    Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx by Ali Nabavi (21097424)

    Published 2025
    “…Demographic, clinical, and heavy metal biomarker data (e.g., blood lead and cadmium levels) were analyzed as features, with hearing loss status—defined as a pure-tone average threshold exceeding 25 dB HL across 500, 1,000, 2000, and 4,000 Hz in the better ear—serving as the binary outcome. Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …”