يعرض 1 - 20 نتائج من 25 نتيجة بحث عن '(( binary health model optimization algorithm ) OR ( binary mask based optimization algorithm ))', وقت الاستعلام: 0.34s تنقيح النتائج
  1. 1
  2. 2

    ROC curves for the test set of four models. حسب Meng Cao (105914)

    منشور في 2025
    الموضوعات:
  3. 3
  4. 4

    A* Path-Finding Algorithm to Determine Cell Connections حسب Max Weng (22327159)

    منشور في 2025
    "…To address this, the research integrates a modified A* pathfinding algorithm with a U-Net convolutional neural network, a custom statistical binary classification method, and a personalized Min-Max connectivity threshold to automate the detection of astrocyte connectivity.…"
  5. 5

    SHAP bar plot. حسب Meng Cao (105914)

    منشور في 2025
    الموضوعات:
  6. 6

    Display of the web prediction interface. حسب Meng Cao (105914)

    منشور في 2025
    الموضوعات:
  7. 7

    Sample screening flowchart. حسب Meng Cao (105914)

    منشور في 2025
    الموضوعات:
  8. 8

    Descriptive statistics for variables. حسب Meng Cao (105914)

    منشور في 2025
    الموضوعات:
  9. 9

    SHAP summary plot. حسب Meng Cao (105914)

    منشور في 2025
    الموضوعات:
  10. 10
  11. 11
  12. 12

    Flowchart scheme of the ML-based model. حسب Noshaba Qasmi (20405009)

    منشور في 2024
    "…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …"
  13. 13
  14. 14
  15. 15
  16. 16

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) حسب Daniel Pérez Palau (11097348)

    منشور في 2024
    "…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values ​​removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"
  17. 17

    Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports حسب Olivier Q. Groot (9370461)

    منشور في 2020
    "…The aim of this study was to develop a natural language processing (NLP) algorithm for binary classification (single metastasis versus two or more metastases) in bone scintigraphy reports of patients undergoing surgery for bone metastases.…"
  18. 18

    Data_Sheet_1_The impact of family urban integration on migrant worker mental health in China.docx حسب Xiaotong Sun (6535064)

    منشور في 2024
    "…The analysis discerns three distinct clusters denoting varying degrees of urban integration within these familial units, namely high-level, medium-level, and low-level urban integration. We applied binary logit regression models to analyze the influence of family urban integration on the mental health among migrant workers. …"
  19. 19

    Data_Sheet_1_Prediction of Mental Health in Medical Workers During COVID-19 Based on Machine Learning.ZIP حسب Xiaofeng Wang (119575)

    منشور في 2021
    "…Besides, we use stepwise logistic regression, binary bat algorithm, hybrid improved dragonfly algorithm and the proposed prediction model to predict mental health of medical workers. …"
  20. 20