بدائل البحث:
bayesian optimization » based optimization (توسيع البحث)
work optimization » wolf optimization (توسيع البحث), swarm optimization (توسيع البحث), dose optimization (توسيع البحث)
binary health » primary health (توسيع البحث)
health work » health worker (توسيع البحث), health workers (توسيع البحث)
a bayesian » _ bayesian (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
bayesian optimization » based optimization (توسيع البحث)
work optimization » wolf optimization (توسيع البحث), swarm optimization (توسيع البحث), dose optimization (توسيع البحث)
binary health » primary health (توسيع البحث)
health work » health worker (توسيع البحث), health workers (توسيع البحث)
a bayesian » _ bayesian (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
-
1
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
منشور في 2025"…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …"
-
2
-
3
-
4
Bayesian sequential design for sensitivity experiments with hybrid responses
منشور في 2023"…To deal with the problem of complex computation involved in searching for optimal designs, fast algorithms are presented using two strategies to approximate the optimal criterion, denoted as SI-optimal design and Bayesian D-optimal design, respectively. …"
-
5
-
6
-
7
-
8
-
9
Data_Sheet_1_Prediction of Mental Health in Medical Workers During COVID-19 Based on Machine Learning.ZIP
منشور في 2021"…Besides, we use stepwise logistic regression, binary bat algorithm, hybrid improved dragonfly algorithm and the proposed prediction model to predict mental health of medical workers. …"
-
10
Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx
منشور في 2025"…Demographic, clinical, and heavy metal biomarker data (e.g., blood lead and cadmium levels) were analyzed as features, with hearing loss status—defined as a pure-tone average threshold exceeding 25 dB HL across 500, 1,000, 2000, and 4,000 Hz in the better ear—serving as the binary outcome. Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …"