يعرض 81 - 100 نتائج من 116 نتيجة بحث عن '(( binary high model optimization algorithm ) OR ( binary damage process optimization algorithm ))', وقت الاستعلام: 0.47s تنقيح النتائج
  1. 81

    The architecture of ILSTM. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  2. 82

    Parameter setting for LSTM. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  3. 83

    LITNET-2020 data splitting approach. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  4. 84

    Transformation of symbolic features in NSL-KDD. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  5. 85
  6. 86

    MCLP_quantum_annealer_V0.5 حسب Anonymous Anonymous (4854526)

    منشور في 2025
    "…<p dir="ltr">Geospatial optimization problems are fundamental research issues in geographic information science modeling, characterized by high dimensionality, dynamics, and discreteness. …"
  7. 87

    Pseudo Code of RBMO. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  8. 88

    P-value on CEC-2017(Dim = 30). حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  9. 89

    Memory storage behavior. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  10. 90

    Elite search behavior. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  11. 91

    Description of the datasets. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  12. 92

    S and V shaped transfer functions. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  13. 93

    S- and V-Type transfer function diagrams. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  14. 94

    Collaborative hunting behavior. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  15. 95

    Friedman average rank sum test results. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  16. 96

    IRBMO vs. variant comparison adaptation data. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  17. 97

    Unraveling Adsorbate-Induced Structural Evolution of Iron Carbide Nanoparticles حسب Peter S. Rice (11805875)

    منشور في 2025
    "…For this purpose, we have developed a general procedure that we use to model an experimentally relevant 270-atom Fe<sub>182</sub>C<sub>88</sub> NP using the neural network-assisted stochastic surface walk global optimization algorithm (SSW-NN). …"
  18. 98

    Generalized Tensor Decomposition With Features on Multiple Modes حسب Jiaxin Hu (1327875)

    منشور في 2021
    "…An efficient alternating optimization algorithm with provable spectral initialization is further developed. …"
  19. 99
  20. 100

    Presentation_1_Modified GAN Augmentation Algorithms for the MRI-Classification of Myocardial Scar Tissue in Ischemic Cardiomyopathy.PPTX حسب Umesh C. Sharma (10785063)

    منشور في 2021
    "…Currently, there are no optimized deep-learning algorithms for the automated classification of scarred vs. normal myocardium. …"