يعرض 21 - 40 نتائج من 60 نتيجة بحث عن '(( binary high process optimization algorithm ) OR ( binary data code optimization algorithm ))', وقت الاستعلام: 0.62s تنقيح النتائج
  1. 21

    An Example of a WPT-MEC Network. حسب Hend Bayoumi (22693738)

    منشور في 2025
    الموضوعات:
  2. 22

    Related Work Summary. حسب Hend Bayoumi (22693738)

    منشور في 2025
    الموضوعات:
  3. 23

    Simulation parameters. حسب Hend Bayoumi (22693738)

    منشور في 2025
    الموضوعات:
  4. 24

    Training losses for N = 10. حسب Hend Bayoumi (22693738)

    منشور في 2025
    الموضوعات:
  5. 25
  6. 26
  7. 27
  8. 28
  9. 29
  10. 30

    Summary of Notations Used in this paper. حسب Hend Bayoumi (22693738)

    منشور في 2025
    الموضوعات:
  11. 31

    Datasets and their properties. حسب Olaide N. Oyelade (14047002)

    منشور في 2023
    "…To address this, we proposed a novel hybrid binary optimization capable of effectively selecting features from increasingly high-dimensional datasets. …"
  12. 32

    Parameter settings. حسب Olaide N. Oyelade (14047002)

    منشور في 2023
    "…To address this, we proposed a novel hybrid binary optimization capable of effectively selecting features from increasingly high-dimensional datasets. …"
  13. 33
  14. 34
  15. 35

    Wilcoxon test results for feature selection. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
  16. 36

    Feature selection metrics and their definitions. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
  17. 37

    Statistical summary of all models. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
  18. 38

    Feature selection results. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
  19. 39

    ANOVA test for feature selection. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
  20. 40

    Classification performance of ML and DL models. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"