Search alternatives:
bayesian optimization » based optimization (Expand Search)
case classification » based classification (Expand Search), class classification (Expand Search), image classification (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
i bayesian » _ bayesian (Expand Search), a bayesian (Expand Search), 95 bayesian (Expand Search)
based case » base case (Expand Search), based cancer (Expand Search)
binary i » binary _ (Expand Search)
bayesian optimization » based optimization (Expand Search)
case classification » based classification (Expand Search), class classification (Expand Search), image classification (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
i bayesian » _ bayesian (Expand Search), a bayesian (Expand Search), 95 bayesian (Expand Search)
based case » base case (Expand Search), based cancer (Expand Search)
binary i » binary _ (Expand Search)
-
1
-
2
-
3
MSE for ILSTM algorithm in binary classification.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
4
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
-
5
Implementation of Adaptive Genetic Algorithm for classification problems
Published 2022“…In this article,</p> <p>we propose a genetic algorithm approach to the</p> <p>classification problem. …”
-
6
-
7
-
8
Bayesian sequential design for sensitivity experiments with hybrid responses
Published 2023“…To deal with the problem of complex computation involved in searching for optimal designs, fast algorithms are presented using two strategies to approximate the optimal criterion, denoted as SI-optimal design and Bayesian D-optimal design, respectively. …”
-
9
-
10
-
11
Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf
Published 2020“…The proposed multilabel approaches convert the original 8-class problem into a set of three binary problems to facilitate the use of the CSP algorithm. …”
-
12
Parameters of the experiments.
Published 2023“…A well-known locality technique is the <i>k</i>-nearest neighbors (<i>k</i>-NN) algorithm, of which several quantum variants have been proposed; nevertheless, they have not been employed yet as a preliminary step of other QML models. …”
-
13
Quantum pipeline workflow overview.
Published 2023“…A well-known locality technique is the <i>k</i>-nearest neighbors (<i>k</i>-NN) algorithm, of which several quantum variants have been proposed; nevertheless, they have not been employed yet as a preliminary step of other QML models. …”
-
14
-
15
-
16
-
17
Summary of LITNET-2020 dataset.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
18
SHAP analysis for LITNET-2020 dataset.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
19
Comparison of intrusion detection systems.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
20
Parameter setting for CBOA and PSO.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”