Search alternatives:
derived optimization » driven optimization (Expand Search), required optimization (Expand Search), design optimization (Expand Search)
process optimization » model optimization (Expand Search)
mask process » based process (Expand Search), basic process (Expand Search), a process (Expand Search)
binary mask » binary image (Expand Search)
i derived » _ derived (Expand Search), 1 derived (Expand Search), ipsc derived (Expand Search)
binary i » binary _ (Expand Search)
derived optimization » driven optimization (Expand Search), required optimization (Expand Search), design optimization (Expand Search)
process optimization » model optimization (Expand Search)
mask process » based process (Expand Search), basic process (Expand Search), a process (Expand Search)
binary mask » binary image (Expand Search)
i derived » _ derived (Expand Search), 1 derived (Expand Search), ipsc derived (Expand Search)
binary i » binary _ (Expand Search)
-
1
-
2
<i>hi</i>PRS algorithm process flow.
Published 2023“…<b>(C)</b> The whole training data is then scanned, searching for these sequences and deriving a re-encoded dataset where interaction terms are binary features (i.e., 1 if sequence <i>i</i> is observed in <i>j</i>-th patient genotype, 0 otherwise). …”
-
3
-
4
A* Path-Finding Algorithm to Determine Cell Connections
Published 2025“…</p><p dir="ltr">Astrocytes were dissociated from E18 mouse cortical tissue, and image data were processed using a Cellpose 2.0 model to mask nuclei. …”
-
5
Image processing workflow.
Published 2020“…<p>Raw fluorescent microscope images (a) were processed with a binary segmentation algorithm, and clusters of bacterial cells were manually annotated. …”
-
6
-
7
-
8
-
9
Supplementary Material for: Penalized Logistic Regression Analysis for Genetic Association Studies of Binary Phenotypes
Published 2022“…We consider two approximate approaches to maximizing the marginal likelihood: (i) a Monte Carlo EM algorithm (MCEM) and (ii) a Laplace approximation (LA) to each integral, followed by derivative-free optimization of the approximation. …”
-
10
-
11
-
12
-
13
-
14
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
Published 2019“…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …”
-
15
-
16
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
17
-
18
-
19
-
20