Search alternatives:
design optimization » bayesian optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based codon » based color (Expand Search), based cohort (Expand Search), based action (Expand Search)
binary i » binary _ (Expand Search)
i design » _ design (Expand Search), a design (Expand Search), co design (Expand Search)
design optimization » bayesian optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based codon » based color (Expand Search), based cohort (Expand Search), based action (Expand Search)
binary i » binary _ (Expand Search)
i design » _ design (Expand Search), a design (Expand Search), co design (Expand Search)
-
61
Results of Random Forest.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
62
Before upsampling.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
63
Results of gradient boosting classifier.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
64
Results of Decision tree.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
65
Adaboost classifier results.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
66
Results of Lightbgm.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
67
Results of Lightbgm.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
68
Feature selection process.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
69
Results of KNN.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
70
After upsampling.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
71
Results of Extra tree.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
72
Gradient boosting classifier results.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
73
Fortran & C++: design fractal-type optical diffractive element
Published 2022“…</p> <p>(2) calculate diffraction fields for fractal and/or grid-matrix (binary) phase-holograms.</p> <p>(3) optimize the fractal and/or grid-matrix holograms for given target diffraction images, using annealing algorithms. …”
-
74
Triplet Matching for Estimating Causal Effects With Three Treatment Arms: A Comparative Study of Mortality by Trauma Center Level
Published 2021“…Few studies, however, have used matching designs with more than two groups, due to the complexity of matching algorithms. …”
-
75
Predicting Thermal Decomposition Temperature of Binary Imidazolium Ionic Liquid Mixtures from Molecular Structures
Published 2021“…The 5% onset decomposition temperature (<i>T</i><sub>d</sub>,<sub>5%onset</sub>) is one of the most conservative but reliable indicators for characterizing the possible fire hazard of engineered ILs. …”
-
76
Data_Sheet_1_Physics-Inspired Optimization for Quadratic Unconstrained Problems Using a Digital Annealer.pdf
Published 2019“…<p>The Fujitsu Digital Annealer is designed to solve fully connected quadratic unconstrained binary optimization (QUBO) problems. …”
-
77
Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model
Published 2019“…Because of the semipredictive nature of the symmetric eNRTL-SAC model, the segment parameter regression is a critical step for solubility prediction accuracy. A particle swarm optimization algorithm is incorporated to preregress conceptual segment parameters of solutes. …”
-
78
MCLP_quantum_annealer_V0.5
Published 2025“…Finally, for spatial relationship verification, a Spatial Coverage Consistency Checking Operator for MCLP Results (SCCCOMR) is designed. Theoretical and applied experiments are conducted using four solvers: QBSolv, D-Wave Hybrid binary quadratic model 2, D-Wave Advantage system 4.1, and Gurobi. …”
-
79
Summary of LITNET-2020 dataset.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
80
SHAP analysis for LITNET-2020 dataset.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”