بدائل البحث:
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
b process » _ process (توسيع البحث), a process (توسيع البحث)
binary i » binary _ (توسيع البحث)
binary b » binary _ (توسيع البحث)
i model » _ model (توسيع البحث), a model (توسيع البحث), 3d model (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
b process » _ process (توسيع البحث), a process (توسيع البحث)
binary i » binary _ (توسيع البحث)
binary b » binary _ (توسيع البحث)
i model » _ model (توسيع البحث), a model (توسيع البحث), 3d model (توسيع البحث)
-
121
The architecture of ILSTM.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
122
Parameter setting for LSTM.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
123
LITNET-2020 data splitting approach.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
124
Transformation of symbolic features in NSL-KDD.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
125
-
126
-
127
-
128
-
129
-
130
-
131
-
132
-
133
-
134
-
135
-
136
-
137
-
138
-
139
-
140