Search alternatives:
design optimization » bayesian optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based codon » based color (Expand Search), based cohort (Expand Search), based action (Expand Search)
binary ii » binary _ (Expand Search), binary b (Expand Search)
ii design » i design (Expand Search), _ design (Expand Search), co design (Expand Search)
design optimization » bayesian optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based codon » based color (Expand Search), based cohort (Expand Search), based action (Expand Search)
binary ii » binary _ (Expand Search), binary b (Expand Search)
ii design » i design (Expand Search), _ design (Expand Search), co design (Expand Search)
-
61
LITNET-2020 data splitting approach.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
62
Transformation of symbolic features in NSL-KDD.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
63
Multicategory Angle-Based Learning for Estimating Optimal Dynamic Treatment Regimes With Censored Data
Published 2021“…In contrast to most existing approaches which are designed to maximize the expected survival time under a binary treatment framework, the proposed method solves the multicategory treatment problem given multiple stages for censored data. …”
-
64
MCLP_quantum_annealer_V0.5
Published 2025“…Finally, for spatial relationship verification, a Spatial Coverage Consistency Checking Operator for MCLP Results (SCCCOMR) is designed. Theoretical and applied experiments are conducted using four solvers: QBSolv, D-Wave Hybrid binary quadratic model 2, D-Wave Advantage system 4.1, and Gurobi. …”
-
65
Data_Sheet_1_Physics-Inspired Optimization for Quadratic Unconstrained Problems Using a Digital Annealer.pdf
Published 2019“…<p>The Fujitsu Digital Annealer is designed to solve fully connected quadratic unconstrained binary optimization (QUBO) problems. …”
-
66
Sample image for illustration.
Published 2024“…The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
-
67
Comparison analysis of computation time.
Published 2024“…The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
-
68
Process flow diagram of CBFD.
Published 2024“…The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
-
69
Precision recall curve.
Published 2024“…The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
-
70
Thesis-RAMIS-Figs_Slides
Published 2024“…<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…”
-
71
Seed mix selection model
Published 2022“…</p> <p> </p> <p>We applied the seed mix selection model using a binary genetic algorithm to select seed mixes (R package ‘GA’; Scrucca 2013; Scrucca 2017). …”
-
72
Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP
Published 2022“…The specific work is as follows: (1) design simulated driving experiment and real driving experiment, determine the fatigue state of drivers according to the binary Karolinska Sleepiness Scale (KSS), and establish the fatigue driving sample database. (2) Improved Multi-Task Cascaded Convolutional Networks (MTCNN) and applied to face detection. …”
-
73
Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf
Published 2020“…Here, we propose a solution to address the limitation of identifiable motor activities by using combined MIs (i.e., MIs involving 2 or more body parts at the same time). And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …”
-
74
Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx
Published 2025“…Demographic, clinical, and heavy metal biomarker data (e.g., blood lead and cadmium levels) were analyzed as features, with hearing loss status—defined as a pure-tone average threshold exceeding 25 dB HL across 500, 1,000, 2000, and 4,000 Hz in the better ear—serving as the binary outcome. Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …”