بدائل البحث:
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
a optimization » ai optimization (توسيع البحث), _ optimization (توسيع البحث), b optimization (توسيع البحث)
image a » image 1_a (توسيع البحث), damage a (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
a optimization » ai optimization (توسيع البحث), _ optimization (توسيع البحث), b optimization (توسيع البحث)
image a » image 1_a (توسيع البحث), damage a (توسيع البحث)
-
61
-
62
-
63
-
64
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
منشور في 2019"…This result reflects the effectiveness of the algorithm, which provides a basis for the effective analysis and processing of image big data.…"
-
65
Image processing workflow.
منشور في 2020"…<p>Raw fluorescent microscope images (a) were processed with a binary segmentation algorithm, and clusters of bacterial cells were manually annotated. …"
-
66
Summary of literature review.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
67
Topic description.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
68
Notations along with their descriptions.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
69
Detail of the topics extracted from DUC2002.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
70
Testing results for classifying AD, MCI and NC.
منشور في 2024"…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …"
-
71
Summary of existing CNN models.
منشور في 2024"…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …"
-
72
-
73
-
74
Sample image for illustration.
منشور في 2024"…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
-
75
-
76
Quadratic polynomial in 2D image plane.
منشور في 2024"…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
-
77
-
78
-
79
-
80
Steps in the extraction of 14 coordinates from the CT slices for the curved MPR.
منشور في 2025"…<p>It shows the step-by-step transformation for two examples on the left and right sides: a) a binary mask of the lower dental arch is shown, which is compared with the binarized CT images to obtain the best slice containing the lower jaw, as shown in b). …"