Search alternatives:
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
a optimization » ai optimization (Expand Search), _ optimization (Expand Search), b optimization (Expand Search)
image a » image 1_a (Expand Search), damage a (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
a optimization » ai optimization (Expand Search), _ optimization (Expand Search), b optimization (Expand Search)
image a » image 1_a (Expand Search), damage a (Expand Search)
-
81
Presentation_1_Modified GAN Augmentation Algorithms for the MRI-Classification of Myocardial Scar Tissue in Ischemic Cardiomyopathy.PPTX
Published 2021“…Currently, there are no optimized deep-learning algorithms for the automated classification of scarred vs. normal myocardium. …”
-
82
Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf
Published 2024“…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
-
83
Comparison analysis of computation time.
Published 2024“…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
-
84
Process flow diagram of CBFD.
Published 2024“…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
-
85
Precision recall curve.
Published 2024“…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
-
86
PathOlOgics_RBCs Python Scripts.zip
Published 2023“…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …”
-
87
Flowchart scheme of the ML-based model.
Published 2024“…<p><b>A)</b> Image preprocessing. <b>B)</b> Image transformation. …”
-
88
Generalized Tensor Decomposition With Features on Multiple Modes
Published 2021“…Our proposal handles a broad range of data types, including continuous, count, and binary observations. …”
-
89
Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf
Published 2020“…The proposed multilabel approaches convert the original 8-class problem into a set of three binary problems to facilitate the use of the CSP algorithm. …”
-
90
Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx
Published 2025“…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …”
-
91
-
92
Thesis-RAMIS-Figs_Slides
Published 2024“…Importantly, this strategy locates samples adaptively on the transition between facies which improves the performance of conventional \emph{<i>MPS</i>} algorithms. In conclusion, this work shows that preferential sampling can contribute in \emph{<i>MPS</i>} even at very small sampling regimes and, as a corollary, demonstrates that prior models (obtained form a training image) can be used effectively not only to simulate non-sensed variables of the field, but to decide where to measure next.…”
-
93
-
94
-
95
DataSheet_1_Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images.docx
Published 2024“…Purpose<p>To develop and validate a deep learning radiomics (DLR) model that uses X-ray images to predict the classification of osteoporotic vertebral fractures (OVFs).…”
-
96
DataSheet_1_Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.docx
Published 2021“…The molecular subtypes and AR expression in pre-treatment biopsy specimens were assessed. A total of 4,198 radiomics features were extracted from the pre-biopsy multi-parametric MRI (including dynamic contrast-enhancement T1-weighted images, fat-suppressed T2-weighted images, and apparent diffusion coefficient map) of each patient. …”
-
97
Flow diagram of the automatic animal detection and background reconstruction.
Published 2020“…(L) The region occupied by the animal is then copied from the latest image and (M) pasted into the first image. (N) The resulting image does not contain the animal and will be used as the background image for the tracking algorithm (<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3000712#pbio.3000712.s004" target="_blank">S4 Fig</a>). …”
-
98
Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield...
Published 2022“…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …”