بدائل البحث:
identification algorithm » classification algorithm (توسيع البحث), detection algorithm (توسيع البحث)
based identification » wide identification (توسيع البحث), early identification (توسيع البحث), _ identification (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
binary b » binary _ (توسيع البحث)
b based » _ based (توسيع البحث), 1 based (توسيع البحث), 2 based (توسيع البحث)
identification algorithm » classification algorithm (توسيع البحث), detection algorithm (توسيع البحث)
based identification » wide identification (توسيع البحث), early identification (توسيع البحث), _ identification (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
binary b » binary _ (توسيع البحث)
b based » _ based (توسيع البحث), 1 based (توسيع البحث), 2 based (توسيع البحث)
-
21
-
22
-
23
-
24
-
25
-
26
-
27
-
28
-
29
<i>hi</i>PRS algorithm process flow.
منشور في 2023"…<b>(B)</b> Focusing on the positive class only, the algorithm exploits FIM (<i>apriori</i> algorithm) to build a list of candidate interactions of any desired order, retaining those that have an empirical frequency above a given threshold <i>δ</i>. …"
-
30
Steps in the extraction of 14 coordinates from the CT slices for the curved MPR.
منشور في 2025"…Protruding paths are then eliminated using graph-based optimization algorithms, as demonstrated in f). …"
-
31
-
32
-
33
-
34
-
35
-
36
-
37
-
38
Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19.
منشور في 2021"…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …"
-
39
Classification report based on HaPi.
منشور في 2024"…This study introduces a Hybrid Feature Engineering Approach for Propaganda Identification (HAPI), designed to detect propaganda in text-based content like news articles and social media posts. …"
-
40
Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx
منشور في 2025"…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …"