بدائل البحث:
identification algorithm » classification algorithm (توسيع البحث), detection algorithm (توسيع البحث)
based identification » wide identification (توسيع البحث), early identification (توسيع البحث), _ identification (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
binary b » binary _ (توسيع البحث)
b based » _ based (توسيع البحث), 1 based (توسيع البحث), 2 based (توسيع البحث)
identification algorithm » classification algorithm (توسيع البحث), detection algorithm (توسيع البحث)
based identification » wide identification (توسيع البحث), early identification (توسيع البحث), _ identification (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
binary b » binary _ (توسيع البحث)
b based » _ based (توسيع البحث), 1 based (توسيع البحث), 2 based (توسيع البحث)
-
41
-
42
-
43
Flowchart scheme of the ML-based model.
منشور في 2024"…<b>Fii)</b> Texture information using local binary patterns. …"
-
44
-
45
-
46
-
47
-
48
-
49
Recent work related to propaganda.
منشور في 2024"…This study introduces a Hybrid Feature Engineering Approach for Propaganda Identification (HAPI), designed to detect propaganda in text-based content like news articles and social media posts. …"
-
50
Framework for data extraction from Twitter.
منشور في 2024"…This study introduces a Hybrid Feature Engineering Approach for Propaganda Identification (HAPI), designed to detect propaganda in text-based content like news articles and social media posts. …"
-
51
Feature statistical analysis.
منشور في 2024"…This study introduces a Hybrid Feature Engineering Approach for Propaganda Identification (HAPI), designed to detect propaganda in text-based content like news articles and social media posts. …"
-
52
Wordcloud of non-propaganda tex.
منشور في 2024"…This study introduces a Hybrid Feature Engineering Approach for Propaganda Identification (HAPI), designed to detect propaganda in text-based content like news articles and social media posts. …"
-
53
5-Fold cross validation.
منشور في 2024"…This study introduces a Hybrid Feature Engineering Approach for Propaganda Identification (HAPI), designed to detect propaganda in text-based content like news articles and social media posts. …"
-
54
Labeled dataset with their corresponding lengths.
منشور في 2024"…This study introduces a Hybrid Feature Engineering Approach for Propaganda Identification (HAPI), designed to detect propaganda in text-based content like news articles and social media posts. …"
-
55
Five fold cross validation.
منشور في 2024"…This study introduces a Hybrid Feature Engineering Approach for Propaganda Identification (HAPI), designed to detect propaganda in text-based content like news articles and social media posts. …"
-
56
Wordcloud of propaganda text.
منشور في 2024"…This study introduces a Hybrid Feature Engineering Approach for Propaganda Identification (HAPI), designed to detect propaganda in text-based content like news articles and social media posts. …"
-
57
-
58
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
منشور في 2024"…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …"
-
59
-
60
Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf
منشور في 2024"…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …"