Search alternatives:
based optimization » whale optimization (Expand Search)
from optimization » fox optimization (Expand Search), swarm optimization (Expand Search), codon optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based from » based food (Expand Search), used from (Expand Search), based arm (Expand Search)
based optimization » whale optimization (Expand Search)
from optimization » fox optimization (Expand Search), swarm optimization (Expand Search), codon optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based from » based food (Expand Search), used from (Expand Search), based arm (Expand Search)
-
61
Parameter setting for LSTM.
Published 2023“…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
-
62
LITNET-2020 data splitting approach.
Published 2023“…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
-
63
Transformation of symbolic features in NSL-KDD.
Published 2023“…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
-
64
Contextual Dynamic Pricing with Strategic Buyers
Published 2024“…This underscores the rate optimality of our policy. Importantly, our policy is not a mere amalgamation of existing dynamic pricing policies and strategic behavior handling algorithms. …”
-
65
Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat.
Published 2025“…The sample was extracted from the "Mushroom" dataset from the UCI repository, containing 8,124 instances. …”
-
66
-
67
Table_1_Computational prediction of promotors in Agrobacterium tumefaciens strain C58 by using the machine learning technique.DOCX
Published 2023“…In the model, promotor sequences were encoded by three different kinds of feature descriptors, namely, accumulated nucleotide frequency, k-mer nucleotide composition, and binary encodings. The obtained features were optimized by using correlation and the mRMR-based algorithm. …”
-
68
-
69
Bayesian sequential design for sensitivity experiments with hybrid responses
Published 2023“…To deal with the problem of complex computation involved in searching for optimal designs, fast algorithms are presented using two strategies to approximate the optimal criterion, denoted as SI-optimal design and Bayesian D-optimal design, respectively. …”
-
70
Psoas muscle CT radiomics-based machine learning models to predict response to infliximab in patients with Crohn’s disease
Published 2025“…<i>Z</i> score standardization and independent sample <i>t</i> test were applied to identify optimal predictive features, which were then utilized in seven ML algorithms for training and validation. …”
-
71
DataSheet_1_Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images.docx
Published 2024“…Utilizing the binary “One-vs-Rest” strategy, the model based on the RadImageNet dataset demonstrated superior efficacy in predicting Class 0, achieving an AUC of 0.969 and accuracy of 0.863. …”
-
72
Flow diagram of the automatic animal detection and background reconstruction.
Published 2020“…(E) The threshold value is calculated based on the histogram: it is the mean of the image subtracted by 4 (optimal value defined by trial and error). …”
-
73
30-Meter Resolution Dataset of Abandoned and Reclaimed Croplands in Inner Mongolia, China (2000-2022)
Published 2024“…This method enables precise classification of cultivation status and adopts a binary classification strategy with adaptive optimization, improving the efficiency of sample generation for the Random Forest algorithm. …”
-
74
Table_1_iRNA5hmC: The First Predictor to Identify RNA 5-Hydroxymethylcytosine Modifications Using Machine Learning.docx
Published 2020“…In this predictor, we introduced a sequence-based feature algorithm consisting of two feature representations, (1) k-mer spectrum and (2) positional nucleotide binary vector, to capture the sequential characteristics of 5hmC sites. …”
-
75
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…The spectral data were split into a training set (80%) and an external validation set (20%). For binary variables, the classification accuracy for cassava cooking time was notably high (RCal2 ranging from 0.72 to 0.99). …”
-
76
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…The spectral data were split into a training set (80%) and an external validation set (20%). For binary variables, the classification accuracy for cassava cooking time was notably high (RCal2 ranging from 0.72 to 0.99). …”
-
77
Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield...
Published 2022“…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …”
-
78
Seed mix selection model
Published 2022“…</p> <p><br></p> <p>The seed mix model is adapted from the seed mix selection model published by Williams and Lonsdorf (2018), which was based on M’Gonigle <em>et al.…”
-
79
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…</p><p dir="ltr">These biological metrics were used to define a binary toxicity label: entries were classified as toxic (1) or non-toxic (0) based on thresholds from standardized guidelines (e.g., ISO 10993-5:2009) and literature consensus. …”