بدائل البحث:
network optimization » swarm optimization (توسيع البحث), wolf optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
network optimization » swarm optimization (توسيع البحث), wolf optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
-
41
Small-scale dataset comparative analysis using the number of features selected.
منشور في 2023الموضوعات: -
42
-
43
-
44
-
45
-
46
A new fast filtering algorithm for a 3D point cloud based on RGB-D information
منشور في 2019"…Then, the optimal segmentation threshold of the V image that is calculated by using the Otsu algorithm is applied to segment the color mapping image into a binary image, which is used to extract the valid point cloud from the original point cloud with outliers. …"
-
47
Related Work Summary.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
48
Simulation parameters.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
49
Training losses for N = 10.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
50
Normalized computation rate for N = 10.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
51
Summary of Notations Used in this paper.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
52
Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf
منشور في 2024"…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …"
-
53
-
54
-
55
Flowchart scheme of the ML-based model.
منشور في 2024"…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …"
-
56
SHAP bar plot.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
57
Sample screening flowchart.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
58
Descriptive statistics for variables.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
59
SHAP summary plot.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
60
ROC curves for the test set of four models.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"