Search alternatives:
complex optimization » convex optimization (Expand Search), whale optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
based complex » layer complex (Expand Search)
less based » lens based (Expand Search), lemos based (Expand Search), degs based (Expand Search)
complex optimization » convex optimization (Expand Search), whale optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
based complex » layer complex (Expand Search)
less based » lens based (Expand Search), lemos based (Expand Search), degs based (Expand Search)
-
141
Individual #5’s action ratio, position states.
Published 2024“…<div><p>The PbGA-DDPG algorithm, which uses a potential-based GA-optimized reward shaping function, is a versatiledeep reinforcement learning/DRLagent that can control a vehicle in a complex environment without prior knowledge. …”
-
142
RSF Components of the best five individuals.
Published 2024“…<div><p>The PbGA-DDPG algorithm, which uses a potential-based GA-optimized reward shaping function, is a versatiledeep reinforcement learning/DRLagent that can control a vehicle in a complex environment without prior knowledge. …”
-
143
Open loop simulation.
Published 2024“…<div><p>The PbGA-DDPG algorithm, which uses a potential-based GA-optimized reward shaping function, is a versatiledeep reinforcement learning/DRLagent that can control a vehicle in a complex environment without prior knowledge. …”
-
144
Average wind test fitness.
Published 2024“…<div><p>The PbGA-DDPG algorithm, which uses a potential-based GA-optimized reward shaping function, is a versatiledeep reinforcement learning/DRLagent that can control a vehicle in a complex environment without prior knowledge. …”
-
145
Internal process of a policy gradient block.
Published 2024“…<div><p>The PbGA-DDPG algorithm, which uses a potential-based GA-optimized reward shaping function, is a versatiledeep reinforcement learning/DRLagent that can control a vehicle in a complex environment without prior knowledge. …”
-
146
Training process of a DDPG individual.
Published 2024“…<div><p>The PbGA-DDPG algorithm, which uses a potential-based GA-optimized reward shaping function, is a versatiledeep reinforcement learning/DRLagent that can control a vehicle in a complex environment without prior knowledge. …”
-
147
PbGA search phases to find the best individuals.
Published 2024“…<div><p>The PbGA-DDPG algorithm, which uses a potential-based GA-optimized reward shaping function, is a versatiledeep reinforcement learning/DRLagent that can control a vehicle in a complex environment without prior knowledge. …”
-
148
Previous usages of DRL in solving PDG problems.
Published 2024“…<div><p>The PbGA-DDPG algorithm, which uses a potential-based GA-optimized reward shaping function, is a versatiledeep reinforcement learning/DRLagent that can control a vehicle in a complex environment without prior knowledge. …”
-
149
Internal process of a critic gradient block.
Published 2024“…<div><p>The PbGA-DDPG algorithm, which uses a potential-based GA-optimized reward shaping function, is a versatiledeep reinforcement learning/DRLagent that can control a vehicle in a complex environment without prior knowledge. …”
-
150
Best Individuals from the mapping phase.
Published 2024“…<div><p>The PbGA-DDPG algorithm, which uses a potential-based GA-optimized reward shaping function, is a versatiledeep reinforcement learning/DRLagent that can control a vehicle in a complex environment without prior knowledge. …”
-
151
Schematic diagram of weld surface defects.
Published 2024“…<div><p>The background of pipeline weld surface defect image is complex, and the defect size is small. Aiming at the small defect size in the weld image, which is easy to cause missed detection and false detection, a lightweight target detection algorithm based on improved YOLOv7 is proposed. …”
-
152
Improved YOLOv7 network structure.
Published 2024“…<div><p>The background of pipeline weld surface defect image is complex, and the defect size is small. Aiming at the small defect size in the weld image, which is easy to cause missed detection and false detection, a lightweight target detection algorithm based on improved YOLOv7 is proposed. …”
-
153
Renderings of data enhancements.
Published 2024“…<div><p>The background of pipeline weld surface defect image is complex, and the defect size is small. Aiming at the small defect size in the weld image, which is easy to cause missed detection and false detection, a lightweight target detection algorithm based on improved YOLOv7 is proposed. …”
-
154
Number and size of marked defects.
Published 2024“…<div><p>The background of pipeline weld surface defect image is complex, and the defect size is small. Aiming at the small defect size in the weld image, which is easy to cause missed detection and false detection, a lightweight target detection algorithm based on improved YOLOv7 is proposed. …”
-
155
Loss function curve.
Published 2024“…<div><p>The background of pipeline weld surface defect image is complex, and the defect size is small. Aiming at the small defect size in the weld image, which is easy to cause missed detection and false detection, a lightweight target detection algorithm based on improved YOLOv7 is proposed. …”
-
156
Precision-Recall curve.
Published 2024“…<div><p>The background of pipeline weld surface defect image is complex, and the defect size is small. Aiming at the small defect size in the weld image, which is easy to cause missed detection and false detection, a lightweight target detection algorithm based on improved YOLOv7 is proposed. …”
-
157
Comparison experiment results.
Published 2024“…<div><p>The background of pipeline weld surface defect image is complex, and the defect size is small. Aiming at the small defect size in the weld image, which is easy to cause missed detection and false detection, a lightweight target detection algorithm based on improved YOLOv7 is proposed. …”
-
158
Ablation experiment results.
Published 2024“…<div><p>The background of pipeline weld surface defect image is complex, and the defect size is small. Aiming at the small defect size in the weld image, which is easy to cause missed detection and false detection, a lightweight target detection algorithm based on improved YOLOv7 is proposed. …”
-
159
Deepwise separable convolution structure diagram.
Published 2024“…<div><p>The background of pipeline weld surface defect image is complex, and the defect size is small. Aiming at the small defect size in the weld image, which is easy to cause missed detection and false detection, a lightweight target detection algorithm based on improved YOLOv7 is proposed. …”
-
160
Comparison analysis of computation time.
Published 2024“…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”