بدائل البحث:
robust optimization » process optimization (توسيع البحث), robust estimation (توسيع البحث), joint optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
robust optimization » process optimization (توسيع البحث), robust estimation (توسيع البحث), joint optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
-
41
Random parameter factor.
منشور في 2023"…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …"
-
42
Eight commonly used benchmark functions.
منشور في 2023"…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …"
-
43
Hyperbolic tangent row domain.
منشور في 2023"…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …"
-
44
Parameter settings.
منشور في 2023"…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …"
-
45
Nonlinear fast convergence factor.
منشور في 2023"…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …"
-
46
CEC2019 benchmark functions.
منشور في 2023"…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …"
-
47
Results of Comprehensive weighting.
منشور في 2025"…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …"
-
48
The prediction error of each model.
منشور في 2025"…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …"
-
49
VIF analysis results for hazard-causing factors.
منشور في 2025"…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …"
-
50
Benchmark function information.
منشور في 2025"…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …"
-
51
Geographical distribution of the study area.
منشور في 2025"…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …"
-
52
Results for model hyperparameter values.
منشور في 2025"…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …"
-
53
Flow chart of this study.
منشور في 2025"…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …"
-
54
Stability analysis of each model.
منشور في 2025"…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …"
-
55
-
56
Sample image for illustration.
منشور في 2024"…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …"
-
57
-
58
-
59
-
60